Automatic Sanskrit Poetry Classification Based on Kavyaguna

Amruta Barbadikar and Amba Kulkarni

amruta.barbadikar@gmail.com,

ambakulkarni@uohyd.ac.in

Department of Sanskrit Studies,
University of Hyderabad.

Abstract

Kavyaguna denotes the syntactic and phonetic
attributes or qualities of Sanskrit poetry that
enhance its artistic appeal, commonly classi-
fied into three categories: Madhyurya (Sweet-
ness), Oja (Floridity), and Prasada (Lucidity).
This paper presents the Kavyaguna Classifier,
a machine learning module, designed to clas-
sify Sanskrit literary texts into three distinct
gunas, by employing a diverse range of ma-
chine learning algorithms, including Random
Forest, Gradient Boosting, XGBoost, Multi-
Layer Perceptron and Support Vector Machine.
For vectorization, we employed two methods:
the neural network-based Word2vec and a cus-
tom feature engineering approach grounded in
the theoretical understanding of Kavyagunas
as described in Sanskrit poetics. The feature
engineering model significantly outperformed,
achieving an accuracy of up to 90.6% in K-fold
cross-validation and 92% in Holdout valida-
tion.

1 Introduction

Natural language processing (NLP) involves the
intersection of computer science, artificial intel-
ligence, and computational linguistics, focusing
on how computers can understand, interpret, and
respond to human languages (Jurafsky and Mar-
tin, 2009). NLP is developing vastly for differ-
ent languages with data-driven approaches. How-
ever, Low Resource Languages face numerous chal-
lenges in NLP, including data scarcity, complex
morphology, orthographic and historical variations,
and a lack of digital resources. These issues, com-
bined with the inadequacy of models designed for
other languages, hinder the development of robust
NLP solutions for Sanskrit. Although Sanskrit has
traditionally been categorized as a Low-resource
language, its NLP development has gained signifi-
cant momentum in recent years. This progress can
be attributed to the well-defined linguistic theories

and the association of modern computational ap-
proaches. Several computer applications are avail-
able for the analysis of the syntactic components of
the language (Goyal and Huet, 2013; Satuluri and
Kulkarni, 2013; Kulkarni and Shukl, 2009; Kulka-
rni and Kumar, 2013, 2011; Goyal et al., 2009;
Kulkarni et al., 2020; Kulkarni and Das, 2012; S,
2022).

The poetic literature of a language reflects the
higher intellect of society. Sanskrit literature, dat-
ing back to the Vedic era, has fascinated humanity
with its sophisticated aesthetic dimensions. Classi-
cal Sanskrit literature is rich in examples of such
poetic expression. Understanding and process-
ing this literature require a high level of intellect.
ANANDAVARDHANA emphasizes the importance
of deeper understanding, stating, "Simply knowing
the words and their meanings does not enable one
to fully appreciate poetry; true enjoyment comes to
those experts who grasp its deeper essence."! For
machines lacking world knowledge, this becomes
a complex task. Without advanced methods for
the automatic interpretation of implied meanings,
machines struggle to process the ornate language
accurately.

While some progress has been made in the pro-
cessing of literary regard, machines can more eas-
ily analyze aspects where meaning is not deeply
embedded. For example, tasks such as meter iden-
tification (Rajagopalan, 2018; Melnad et al., 2015;
Neil, 2023; Terdalkar and Bhattacharya, 2023), and
the identification and analysis of sound figures
like Yamaka (Barbadikar and Kulkarni, 2023) and
Anuprasa (Barbadikar and Kulkarni, 2024) have
been successfully achieved.

Poetry classification is performed using vari-
ous standards such as sentiment, poetic style, etc.
Wujastyk (1978) worked out the classification for

!$abdarthasasanajiianamatrenaiva na vedyate |
vedyate sa tu kavyarthatattvajiiaireva kevalam Il 1.7,
Dhvanyaloka

Sanskrit classical text of Kumarasambhava based
on meter scansion for authorship criteria. Ahmad
et al. (2020) classified poetry text into emotional
states using deep learning techniques. Deshmukh
et al. (2021) performed sentimental classification
of Marathi poems using machine learning. Singh
et al. (2023) attempted classifying Hindi poetry on
the phonemic features komala and kathora with
the use of learning algorithms using statistical data.
Kaur and Saini (1970) developed Punjabi poetry
classifiers using different textual features.

In this paper, we present a novel approach to
classifying poetry based on various features such
as Lucidity, Floridity and sweetness known as the
Kavyagunas (henceforth referred to as guna) using
various machine learning models. In addition, we
discuss the application and comparison of two dif-
ferent methods of vectorization, viz. Word2vec and
feature engineering.

2 Background

Sanskrit poetics is primarily divided into six differ-
ent schools, viz. rasa (aesthetic flavor), alankara
(figures of speech), riti (style), dhvani (sugges-
tion), aucitya (propriety), and vakrokti (oblique-
ness). Each of these is based on what they consider
the most essential factor in poetry. Various ele-
ments contribute to the beauty of poetry, and these
six schools emphasize the different aspects deemed
the most important in the enjoyment of poetry.

Although guna (quality) is not considered a sep-
arate school, its role is vital in the enjoyment of
poetry, as it catalyzes the experience of rasa, the
aesthetic flavor. Guna literally means "quality"
refers to syntactic and phonemic features in the
literary text that enhances its overall aesthetic ex-
perience.

There are several opinions of theoreticians on
the number and nature of Kavyagunas. Mainly,
there are three kinds of perspectives over the clas-
sification of the gunas found in the tradition.

1. Classification with Ten gunas

BHARATA (1% century AD) introduced the
concept of Kavyaguna in Natyasastra. These
ten Kavyagunas are Sle._m (Union of word
and intended meaning), Prasada (Perspicu-
ity), Samata (Uniformity), Samadhi (Con-
centration), Madadhurya (Sweetness), Oja
(Grandeur), Padasaukumarya (Agreeable-
ness), Arthavyakti (Directness of expression),
Udarata (Exaltedness), and Kanti (Polish).

VAMANA (6 century AD) standardised riti
concept. He bestowed the spotlight to rit7
in his Kavyalankara-sutravrtti (KS). Accord-
ing to him riti (style) is the vital element
of the Kavya. The ritis are the style of po-
ets, shown through the choice of the sylla-
bles which are the smallest part of a word
and length of compound words. According
to VAMANA there are ten Sabdagunas and
ten Arthagunas. These ten gunas of each type
have the same name but different attributes
according to the category. These are instru-
mental in identifying the riti. The features of
these gunas are similar to that of BHARATA.
Poets like DANDIN, BANBHATTA use com-
plex combinations of syllables and long com-
pounds. Three dominant ritis are Gaudi,
Paiicalr and Vaidarbhi. Gaudr riti abounds in
the qualities of Oja (floridity) and Kanti (pol-
ish).? Paiicalr is endowed with the qualities of
Madhurya (sweetness) and Saukumarya (soft-
ness).> Vaidarbhi diction consists of all the
ten gunas in proportion.*

. Classification with Three gunas

The classification consists of three gunas,
viz. Madhurya (Sweetness), Oja (Floridity),
and Prasada (Lucidity)—was introduced by
BHAMAHA. In his Kavyalamkara (4th century
AD), BHAMAHA explains these three quali-
ties in terms of their syntactic characteristics,
although he does not explicitly label them as
gunas. Instead, these qualities represent the
essential attributes that a poet must employ
to express sweetness, floridity, and lucidity in
their work.

BHAMAHA and others linked the concept of
gunas with rasa (aesthetic experience), Un-
like theorists who regarded riti (style) as the
soul of poetry. According to this view, gunas
help enhance and prepare the reader’s mind
for the experience of rasa. This approach
was later followed by eminent scholars like
ANANDAVARDHANA and MAMMATA.

MAMMATA (11" AD), while defining kavya
(poetry), emphasized the inclusion of gunas
as essential elements.” He not only advo-

2Qjah kantimati gaudiya Il 2.12, KS

*Madhurya Saukumaryopapanna paficali Il 13, KS
*samagragunopeta vaidarbhi | 2.11, KS
Stadadosau Sabdarthau

cated the threefold classification of gunas
but also provided a rationale for not con-
sidering the ten types of gunas outlined by
earlier scholars. According to MAMMATA,
S?e_sa, Samadhi, Udarata, and Prasdada, as de-
fined by VAMANA, are subsumed under Oja.
Madhurya remains as it is, while VAMANA’s
Arthavyakti corresponds to MAMMATA’S
Prasdada. VAMANA’s Samata refers to uni-
formity in writing, which can sometimes be a
flaw, as a poet needs to adapt their style to suit
the mood of the events described in the kavya.
Saukumarya (Softness) is understood as the
absence of harshness, and Kanti (Polish) is
regarded as the absence of vulgarity.

3. Other Classifications

KUNTAKA and BHOJA contributed with other
prominent classification schemes. KUNTAKA
identified gunas as indicators of the three
margas (paths of style): Saukumarya (soft-
ness), Prasada (lucidity), Lavanya (charm),
and Abhijatya (nobility or delight). While the
names of these gunas remain the same, their
characteristics vary across each marga. Ad-
ditionally, KUNTAKA emphasized the impor-
tance of Aucitya (propriety) and Saubhagya
(grace or delight), which are essential gunas
without which poetry would lose its appeal.

BHOJA, who was a renowned critic in the 10"
century AD, expanded on the concept of gunas
in his treatise Sarasvatikanthabharana. In this
work, he detailed 24 Sabdagunas (qualities of
sound) and 24 arthagunas (qualities of mean-
ing), offering an extensive critique of each
aspect of poetic expression.

Given the clarity of the three guna classification,
we adopted this scheme for our poetry classifica-
tion model. These three gunas viz. Madhurya
(sweetness), Oja (floridity), and Prasada (lucidity)
effectively encapsulate the essence of other classi-
fication systems, distilling multiple qualities into
a simpler framework. Madhurya is characterized
by soft and sweet constructions with minimal com-
pounds, while Oja involves harsher, more complex
constructions with longer compounds. Prasada,
the neutral guna, is present in all types of construc-
tions and across all rasas.

In the ten guna classification, many qualities are
defined by the absence of faults, making it diffi-

sagunau analankrti punah kvapi | 1.1, Kavyaprakasa

cult to assign precise vector values for supervised
machine learning tasks. In contrast, the three guna
scheme clearly differentiates the types, reducing
the likelihood of class confusion. The distinct fea-
tures of Madhurya, Oja, and Prasada provide a
solid foundation for classification, ensuring better
clarity and separation in the output of the model.
The detailed characteristics of these three gunas are
as follows.

1. Madhurya (Sweetness): It invokes a sense of
mollification and melting of the reader’s mind.
Commonly associated with Srrigara (erotic),
Karuna (compassionate), and Santa (peace-
ful) rasas. It is characterized by a pleasing
construction using soft consonants and short
or no compound words.

2. Oja (Floridity): It provides a sense of lus-
trous expansion and is effective in depicting
Vira (heroic), Bibhatsa (disgusting), and Rau-
dra (furious) rasas. It is identified by the use
of harsh consonant combinations and lengthy
compounds.

3. Prasada (Lucidity): This quality ensures that
the meaning of the text is easily comprehen-
sible upon hearing. It is present across all
kinds of Rasas and constructions.® There
is no consonant combination and length of
compound words specified to identify Prasada
guna. However, the literary text where there
is absence of Madhurya and Oja, can be con-
sidered under this category.

(The syntactic and phonetic features for
Madhurya and Oja are shown in the table 1)

3 Implementation and Algorithm

In the previous section, we discussed the character-
istics of gunas as defined in the treatises of Sanskrit
poetics. For individuals, it can be challenging to
focus on and recall these nuanced features, as a
human mind often processes these poetic effects
collectively, intuitively, to classify poetry into the
respective gunas. Despite clearly defined rules and
boundaries, rule-based systems struggle to handle
the inherent uncertainty and complexity of Sanskrit
poetry. Moreover, there is currently no model ca-
pable of effectively processing such poetry without

®$rutimatrena $abdattu yenarthapratyayo bhavet |
sadharanah samagranam sa prasado guno matah Il 8.76,
Kavyaprakasa

Madhurya Oja
Consonants | all exceptt, t, d, d, s, § ttdds s
Conjuncts nasal C + C unaspirated C + aspirated C
r/n + short V r/n + long V
r+C/C+r
C+C
Compounds No or of lengthy
smaller length
Construction moderate complex extreme complex

Table 1: Phonetic and Syntactic Features of gunas
(Note: C = consonant, V = vowel)

supervision. Therefore, we chose to pursue a bal-
anced approach using supervised machine learning
with feature engineering.

3.1 Dataset

The learning dataset consists of 672 San-
skrit verses, equally distributed among the
three gunas. These verses are primarily
sourced from classical Sanskrit literature, in-
cluding works such as Kumarasambhava, Bud-
dhacarita, Rtusamhara, AmaruSataka, Manusmrti,
Sisupalavadha, Dasakumaracarita, Ramayana and
Mahabharata. To introduce more variety, se-
lected hymns (stotras) like Sivatandava-stotra,
Mahisasura-mardini-stotra, etc. have also been
added to the dataset.

For classification purposes, we consider each
verse as a unit of input. While the diction of a poet
often remains consistent throughout a poem, the
choice of a specific guna is influenced by the rasa
(emotional essence) of the event being described.
Consequently, 224 verses have been assigned to
each of the three gunas in the dataset, providing a
balanced distribution for training the model.

These verses undergo simple steps of data nor-
malization. We remove punctuation marks and
avagraha (°s’), a special symbol used to indicate
the elided akara or akara. Once the data is cleaned,
it is ready for the feature extraction process. This
ensures that the dataset is prepared for machine
learning algorithms to process it efficiently and
produce accurate classifications.

3.2 Vectorization

Machines do not inherently understand words or
alphabets, they only process numbers. Therefore,
it is essential to convert text into numerical values
based on specific criteria. This numerical represen-

tation of text features is called a vector. Several
automatic models are available for converting text
into vectors, such as Word2Vec. Word2Vec is a
neural network-based model that generates vector
representations of words, capturing their semantic
meanings and relationships by training on large
datasets. It produces word embeddings, where sim-
ilar words are mapped to nearby points in the vector
space, enabling efficient similarity calculations and
other linguistic tasks.

However, in case of Sanskrit, tokenization for
vectorization becomes particularly challenging due
to the phenomena of sandhi (phonetic joining of
words) and samasa (compound words). Addition-
ally, the presence of polysemous words (words with
multiple meanings) complicates the vectorization
process while using models trained on for other
languages. To address these challenges, manual
feature extraction based on the clues provided by
Sanskrit poetics is a more suitable approach.

Here, for the comparison purposes, we apply
both the techniques of vectorization viz. Word2vec
and feature engineering.

3.2.1 Custom Feature Engineering

The clues to identify gunas are already provided in
the poetic tradition. We define the eight different
features. These features are as follows.

1. Number of syllables: This feature is a count
of total number of syllables in a verse.

2. Number of words: This feature represents
the proportion of the number of words in a
verse to the total number of letters. The num-
ber of words and letters may vary depending
on the meter. For instance, the Anustup me-
ter has 32 aksaras, while the Sardilavikridita
meter has 48 aksaras. To maintain uniformity

across meters, we calculate the proportion of
words to letters.

3. Number of lengthy compound words: This
feature measures the number of long com-
pound words. A compound deemed to be long
if it has more than 9 syllables. The number is
arrived from the heuristics of the data used for
training. The count of such words is divided
by the total number of words in the verse.
Generally, verses with more compounds or
sandhi have fewer independent words. Oja
guna verses tend to have fewer words than
Madhurya verses, with Prasada constructions
having even more independent words.

4. Number of Oja syllables and conjuncts: In
Kavyaprakasa, MAMMATA defines typical
syllables and conjunct combinations of Oja’
and Madhurya. For Oja, we count:

* All retroflex consonants except nasals (£,
th, d, dh, s,).

* r and n followed by long vowels.

* Unaspirated consonants paired with as-
pirated consonants from the same artic-
ulation group (e.g., k+kh, g+gh, c+ch,
J+jh).

* Any consonant combined with itself (e.g.,
t+t, th+th, v+v).

These combinations are counted across the
verse and divided by the total number of let-
ters. The percentage is taken as the feature
value.

5. Number of conjunct consonants for
Madhurya: For Madhurya, MAMMATA
provides the following guidelines®:

* The combinations used for Oja should be
avoided.

* Count conjunct consonants where any
nasal is combined with a consonant of
the same articulation point (e.g., n+k,
fi+c, n+t, n+t, m+p). This count is di-
vided by the total number of letters, and
the percentage is considered the feature
value.

"yoga adyatrtiyamyamantyayo rena tulyayoh |
tadih Sasau vrttidairghyam gumpha uddhrta ojasi Il 8.75,
Kavyaprakasa

8murdhni vargantyagah sparsa atavarga ranau lagh |
avrttirmadhyavrttirva madhurye ghatana tatha ||
Kavyaprakasa

8.74,

6. Number of long vowels: This feature repre-
sents the percentage of long vowels (q, 7, i, e,
ai, o, au) out of the total number of vowels in
the verse.

7. Number of r and n followed by short vow-
els: This feature is the frequency of r and n
followed by short vowels, divided by the total
number of letters in a verse.

8. Number of unaspirated consonants: This
feature captures the percentage of unaspirated
consonants (k, g, ¢, j, t, d, p, b) that occur in
Madhurya constructions, divided by the total
number of letters in the verse.

These features are calculated for each verse of
the dataset as an eight-dimensional vector.

3.2.2 Word2vec

To compare the performance of the mentioned
feature engineering assisted model with a neural
network-based word embedding model, we em-
ployed the Word2vec technique, which generates
vectors for each word in the text based on its se-
mantic meaning and relationships with neighboring
words. However, in the context of guna classifica-
tion, we are more focused on phonemes rather than
the word meaning or their semantic relationships.
Therefore, we split the text into aksaras and gen-
erated vectors accordingly. We set the vector size
to 500 and, since our classification is at the verse
level, we calculated a sentence vector that is the
average of the vectors for all aksaras within each
verse to represent the entire verse.

3.3 Learning Models

The extracted vectors are stored for each verse and
are used to train the machine learning models. For
training purposes, we split the dataset into training
and test sets. Here, we have split the dataset into
80% training and 20% testing to ensure that the
model generalizes well.

We consider multiple models that are developed
to train the machine, namely,

* Random Forest (RF)

* Gradient Boosting (GB)

* Support Vector Machine (SVM)
* Multi-layer Perceptron (MLP)

e Extra Trees (ET)

¢ Extreme Gradient Boosting (XGB)

We optimise the performance of MLP by setting
max-iter = 2 000 and in SVM we set the gamma
= ‘auto’.

4 Performance Evaluation

4.1 Validation of Word2vec

The six models were then trained using these au-
tomatically generated vectors. The precision and
standard deviation of these models evaluated using
K-fold cross-validation are detailed in the table 2.
We observed a low score in all the models. The
highest score was obtained in the Multi-Layer Per-
ceptron (MLP) at 59%.

Model Accuracy Standard Deviation
RF 0.56 0.06
GB 0.58 0.07
SVM 0.33 0.02
MLP 0.59 0.11
ET 0.56 0.06
XGB 0.58 0.06

Table 2: Performance Metrics in K-fold Validation of
Different Models using Word2vec

4.2 Validation of Feature Engineering Based
Models

To thoroughly test models trained on the custom
features given by the poetic theorists, we consid-
ered two types of validation techniques.

4.2.1 10-fold Cross-validation

Model Accuracy Standard Deviation

RF 0.885106 0.031844
GB 0.870213 0.032197
SVM 0.906383 0.043811
MLP 0.893617 0.026913
ET 0.893617 0.028546
XGB 0.893617 0.026913

Table 3: Accuracy and Standard deviation scores of
different models according 10-fold cross validation

The table 3 shows the accuracy and standard de-
viation of various machine learning models. The
figure 1 shows the comparison of models in the box
and whisker plot. The Support Vector Machine
model achieved the highest accuracy at 90.6%,
though with a slightly higher standard deviation

(0.0438). Models like Gradient Boosting, Multi-
Layer Perceptron, Extra Trees, Random Forest and
XGBoosting all performed well, with accuracies
around 87-89%, and comparable stability. The stan-
dard deviations for all models are relatively low,
suggesting consistent performance across different
runs, although the SVM model displayed slightly
greater variability than the others. Overall, SVM
stands out in accuracy, while other models offer a
balanced mix of performance and consistency.

4.2.2 Holdout Validation

The other technique we employ to evaluate the
model is the holdout validation technique, in which
the dataset is split into two subsets. One for training
the model and the other for testing its performance.
This ensures that the model is evaluated on unseen
data, providing a more reliable and generalized
model when run on unseen data. There are vari-
ous scores to compare the performances (see table
4). These scores cover various conditions for the
reliability of the models. In addition, a confusion
matrix is also generated to analyze the learning of
the model for each of the classes.

Model Accuracy
RF 0.88
GB 0.87
SVM 0.90
MLP 0.87
ET 0.92
XGB 0.91

Table 4: Performance Comparison of Machine Learning
Models According to Holdout Validation

In the context of multi-class classification, a con-
fusion matrix provides a detailed breakdown of
the model’s performance by showing how predic-
tions for each class correspond to the true labels.
It gives insight into how often the model confuses
one class with another, highlighting strengths and
weaknesses in classification accuracy across differ-
ent classes. We reserved 20% of the data in the
test set. 135 verses in the test set were randomly
distributed among these classes as, 45 for Oja, 47
for Madhurya and 43 for Prasada.

In the matrices given for each model in tables
5,6,7,8,9 and 10 the rows indicate gold values
for Madhurya (M), Prasada (P) and Oja (O). The
columns M, P and O show the predicted classes.

The confusion matrices indicate that all the mod-
els were able to clearly distinguish between the

Algorithm Comparison

0.975 -

0.950 A _{_

0.925 +

0.900

0.875 A J_

0.850 A
I
0.825 -
o
0.800 - -
RF GB SVM MLP ET XGB
Figure 1: Comparison of Model Performance
M P O M P O
M |37 4 4 M |37 6 2
P |3 44 0 P |4 43 0
O|5 0 38 o6 0 37

Table 5: Random Forest

M P O
M |3 5 4
P |4 43 0
o4 0 39

Table 6: Gradient Boosting

M P O
M |38 4 3
P |3 4 0
Oj4 0 39

M P O
M|39 4 2
P |2 45 0
O|3 0 40

Table 9: Extra Trees

M P O
M|38 4 3
P |2 45 0
O3 0 40

Table 7: Support Vector Machine

classes Oja (O) and Prasada (P). Notably, there
are no instances of O being falsely predicted as P
or P being falsely predicted as O, demonstrating
the models’ strong ability to differentiate between
these two gunas. However, the models encountered

Table 10: XGBoost

difficulty in distinguishing Madhurya (M) from
both O and P. Specifically, the models misclassified
5-9 examples between M and P, while a similar
range of misclassifications (5-9 instances) was ob-
served between M and O. This fact highlights the

greater challenge in accurately distinguishing be-
tween M and other two classes.

5 Error Analysis

As we have seen in table 1, the characteristics of
Madhurya and Oja are contradictory to each other.
Focusing on it we described various features. With
this information, one would expect the models to
perform better for Oja and Madhurya on first place.
Contrary to our expectation, we find that some
Madhurya examples are incorrectly classified as
Oja and Prasada and vice versa. In order to analyze
the failure cases, we take the average of the values
for each feature in different classes, and compare
the values of the incorrectly analysed cases. The
verse with the feature values (Table 12) for the
following four cases are as follows.

Feature M | (0]
Syllables (v) 126.76 80.98 137.66
Words (w) 10.90 13.13 6.27
Lengthy Compounds (1c) 4.72 098 28.58
Oja Syllables (os) 18.05 14.64 23.71
Long Vowels (1v) 1746 2090 17.19
Unaspirated Consonants (uc) 3451 3390 33.80
Madhurya Syllables (ms) 8.73 1.79 6.66
r and n with short vowels (rn) 5.62 4.67 6.99

Table 11: Average value for each variable for categories
M, Pand O

1. Madhurya predicted as Oja: In Table 12,
the first example shows a verse from the Oja
class incorrectly classified as Madhurya. The
values of key variables such as v, w, 1c, os,
and rn closely align with the average values
for the Madhurya class, leading to the misclas-
sification.

dharasyoddhartasi tvamiti nanu sarvatra

jagati

pratitastatkim mamatibharamadhah
prapipayisuh |

upalabdhevoccairgiripatiriti §ripatimasau
balakrantah

kridaddviradamathitorviruharavaihll

2. Oja predicted as Madhurya:
In Table 12, the second example demonstrates
a verse from the Madhurya class being incor-
rectly classified as Oja. The variables v, w,
1c, os, and rn exhibit values that match the
average characteristics of the Oja class, which
likely contributed to the error.

Srimadbhirjitapulinani
madhavinamarohairnibidabrhannitambabimbaihl
pasanaskhalanavilolamasu niinam
vailaksyadyayuravarodhanani sindhoh ||

3. Madhurya predicted as Prasada:
The third instance in Table 12 represents a
verse belonging to the Madhurya class that
was misclassified as Prasada. Here, the values
of the variables v, w, 1v, and ms align more
closely with the average values for Prasada,
resulting in the misclassification.

tadiyamalokya sugadha bhakte

mahantamaves§amuvaca lokah |
baddhadarosau yadi pandurange tadantike
tisthati kim na nityam |l

4. Prasada predicted as Madhurya:
The fourth instance in Table 12 shows a verse
from the Prasada class being classified as
Madhurya. This misclassification can be at-
tributed to the variables v, w, and 1v, whose
values align closely with the average values
of the Madhurya class.
acyutam kesavam ramanarayanam
krsnadamodaram vasudevam harim |

$ridharam madhavam gopikavallabham
janakinayakam ramacandram bhaje |

Oja is characterized by its complexity, while
Prasada is associated with simplicity. In contrast,
Madhurya, with its soft combinations of conso-
nants and a moderate level of complexity, occupies
a midpoint between these two gunas. Even for a
human annotator, it is tricky to classify the $lokas,
especially those identified as failed cases, into a
definitive guna. This observation provides a plausi-
ble explanation for the misclassifications, as texts
exhibiting Madhurya may sometimes share features
with Oja and Prasada.

This discrepancy opens avenues for further ex-
ploration. Future research could address this issue
by employing multilabel classification techniques,
allowing texts to be assigned to one or more gunas
based on their dominant features.

In Table 11, features such as v, w, 1c, and os
have shown a significant impact on the classifica-
tion task. However, features like 1v, uc, ms, and rn
exhibit less pronounced differences in their average
values across gunas. Assigning weights to these
features based on their relevance to specific classes
could improve classification results. For instance,
greater weight could be assigned to 1v, uc, ms, and
rn when they appear in Madhurya.

’ Sr. No. ‘ \ ‘ w 1c os lv uc ms rn True class | Predicted
1 183.0 | 6.5574 | 16.6667 | 34.0000 | 14.8649 | 34.4262 | 12.0219 | 6.0109 M (0]
2 121.0 | 9.9174 | 0.0000 | 18.0000 | 17.6471 | 38.8430 | 4.9587 | 4.1322 0] M
3 99.0 | 13.1313 | 0.0000 | 13.0303 | 22.7273 | 37.3737 | 5.0505 | 1.0101 M P
4 112.0 | 10.7143 | 0.0000 | 15.0000 | 14.8936 | 26.7857 | 10.7143 | 9.8214 P M

Table 12: Misclassified examples with their feature values and predicted labels.

Such approaches could offer deeper insights
into the overlapping characteristics of these poetic
styles and enhance the accuracy of classification
tasks.

6 Comparision of Feature Engineering
with Word2vec

Word2vec is a widely used unsupervised learning
technique that captures semantic relationships be-
tween words by mapping them into continuous
vector spaces. However, in our task of classifying
Sanskrit poetry into gunas, we observed certain
limitations when relying solely on Word2Vec em-
beddings.

The low score with the Word2vec model can
be attributed to the limited size of the training
data. Models like Word2vec typically require large
datasets, often in the thousands or even millions of
examples, to perform effectively. Additionally, the
vector sizes used in such models usually range from
hundreds to thousands, demanding powerful com-
putational resources. Training on smaller datasets
with limited resources poses significant challenges.
Despite these constraints, our approach of training
the model on minimal data with available resources
has produced commendable results, highlighting
the effectiveness of the feature engineering tech-
nique.

The custom feature engineering method is specif-
ically tailored to the nuances of Sanskrit poetics.
By incorporating features which indirectly reflect
morphological structure, consideration of metrical
patterns, and stylistic markers, our model was able
to better capture the inherent characteristics that
define different gunas. This domain-specific ap-
proach resulted in higher accuracy compared to the
more general-purpose Word2Vec embeddings.

7 Conclusion

The computational processing of poetic language
presents significant challenges. To address
these complexities, we introduced the module

‘Kavyaguna Classifier’, designed to classify literary
texts into three distinct gunas: Madhurya, Oja, and
Prasada. For this task, we explain two different ap-
proaches used for vectorization. Word2Vec is use-
ful for capturing semantic information, our custom
feature engineering leveraged expert knowledge of
the literary domain, allowing a more precise clas-
sification in this context. This demonstrates that,
in specialized tasks like the classification of San-
skrit poetry, combining traditional machine learn-
ing techniques with domain-specific insights can
offer significant advantages over purely data-driven
methods.

This module not only serves its primary purpose,
but can also be adapted for related tasks. As dis-
cussed previously, these gunas are essential com-
ponents of both ritis and rasas. The ritis reflect
the stylistic inheritance of poets, while the rasas
encapsulate the emotions arising from aesthetic
experiences. The interplay of gunas in these con-
texts is crucial, making the Kavyaguna classifier a
valuable tool for identifying both ritis and rasas.

Moreover, given the linguistic similarities be-
tween Sanskrit and other Indian languages, their
grammatical structures and poetic traditions are
deeply influenced by Sanskrit. Concepts analogous
to Kavyaguna can be found in these languages as
well. By employing language-specific training data
and adapting feature extraction methodologies ac-
cordingly, similar classification tasks can be effec-
tively achieved across various Indian languages.

8 Limitations

In this paper, we have discussed the models trained
on engineered features limited to Sanskrit. To ex-
tend this method for other languages, similar ex-
ercise needs to be worked out by observing the
language-specific poetic style.

References

Acarya Visve$vara. 2017.
jianamandala Limited, Varanasi.

Kavyaprakasa.

Prateek Agrawal and Vishu Madaan. 2020. A Sanskrit
to Hindi language machine translator using rule based
approach. In Proceedings of the 17th International
Conference on Natural Language Processing (ICON):
System Demonstrations, pages 13—15, Patna, India.
NLP Association of India (NLPAI).

Shakeel Ahmad, Mohd Zubair, Fahad Alotaibi, and
Sherafzal Khan. 2020. Classification of poetry text
into the emotional states using deep learning tech-
nique. IEEE Access, PP:1-1.

Amruta Barbadikar and Amba Kulkarni. 2023. Yamaka
identifier and classifier: A computational tool for the
analysis of Sanskrit figure of sound (upcoming). In
Annals of Bhandarkar Oriental Research Institute.

Amruta Barbadikar and Amba Kulkarni. 2024.
Anuprasa identifier and classifier: A computational
tool to analyze Sanskrit figure of sound. In Proceed-
ings of the 7th International Sanskrit Computational
Linguistics Symposium, pages 102—112, Auroville,
Puducherry, India. Association for Computational
Linguistics.

Rushali Deshmukh, Suraj Kore, Namrata Chavan, Say-
ali Gole, and Kumar Adarsh. 2021. Marathi poem
classification using machine learning. International
Journal of Recent Technology and Engineering, 8.

Benjamin Englard. 2013. A rhetorical analysis approach
to natural language processing. In ArXiv.

Manomohan Ghosh. 1951. The Natyasastra, volume 1.
Asiatic Society of Bengal, Calcutta.

Pawan Goyal, Vipul Arora, and Laxmidhar Behera.
2009. Analysis of sanskrit text: Parsing and seman-
tic relations. In Sanskrit Computational Linguistics,
pages 200-218, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Pawan Goyal and Gérard Huet. 2013. Completeness
analysis of a sanskrit reader. In Proceedings, 5th
International Symposium on Sanskrit Computational
Linguistics. DK Printworld (P) Ltd.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition, 2nd edition. Pearson Pren-
tice Hall.

Jasleen Kaur and Jatinderkumar Saini. 1970. Design-
ing punjabi poetry classifiers using machine learn-
ing and different textual features. The International
Arab Journal of Information Technology (IAJIT),
17(01):38 — 44.

Amba Kulkarni and Monali Das. 2012. Discourse analy-
sis of Sanskrit texts. In Proceedings of the Workshop
on Advances in Discourse Analysis and its Compu-
tational Aspects, pages 1-16, Mumbai, India. The
COLING 2012 Organizing Committee.

Amba Kulkarni and Anil Kumar. 2011. Statistical con-
stituency parser for Sanskrit compounds. In ICON
2011.

Amba Kulkarni and Anil Kumar. 2013. Clues from
Astadhyay1 for compound type identification. In 5th
international SCLS 2013.

Amba Kulkarni and Madhusoodana Pai. 2019. Sanskrit
sentence generator. In Proceedings of the 6th Inter-
national Sanskrit Computational Linguistics Sympo-
sium, pages 1-13, IIT Kharagpur, India. Association
for Computational Linguistics.

Amba Kulkarni, Pavankumar Satuluri, Sanjeev Panchal,
Malay Maity, and Amruta Malvade. 2020. Depen-
dency relations for Sanskrit parsing and treebank. In
Proceedings of the 19th International Workshop on
Treebanks and Linguistic Theories, pages 135-150,
Diisseldorf, Germany. Association for Computational
Linguistics.

Amba Kulkarni and Devanand Shukl. 2009. San-
skrit morphological analyser: Some issues. In the
Festscrift volume of Bh. Krishnamoorty, Indian Lin-
guistics.

P. C. Lahiri. 1937. Concepts of Riti and Guna in San-
skrit Poetics. Phd thesis, University of Dacca.

Keshav Melnad, Peter Scharf, and Pawan Goyal. 2015.
Meter identification of Sanskrit verse. In Sanskrit
Syntax: Selected Papers Presented at the Seminar on
Sanskrit Syntax and Discourse Structures.

Dr. Kameshvar Nath Mishra. 2006. Sarasvati-
kanthabharanam by Bhoja. Chaukhambha Publish-
ers.

Radheshyam Mishra, editor. 2012. Vakrokti-jivita.
Chowkhamba Sanskrit Series, Benares.

Tyler Neil. 2023. Skrutable: Another step toward effec-
tive Sanskrit meter identification. In Proceedings of
the Computational Sanskrit & Digital Humanities:
Selected papers presented at the 18th World Sanskrit
Conference.

S. Rajagopalan. 2018. A user-friendly tool for metrical
analysis of Sanskrit verse. In Computational Sanskrit
& Digital Humanities, Selected papers presented at
the 17th World Sanskrit Conference.

Prasanna S. 2022. Spellchecker for Sanskrit:the road
less taken. In Proceedings of the 19th International
Conference on Natural Language Processing (ICON),
pages 290-299, New Delhi, India. Association for
Computational Linguistics.

C. Shankara Rama Sastri. 1956. Kavyalankara of
Bhamaha. The Sri Balamanorama Press, Mylapore,
Madras.

Pavankumar Satuluri and Amba Kulkarni. 2013. Gener-
ation of sanskrit compounds. In ICON 2013.

https://aclanthology.org/2020.icon-demos.5
https://aclanthology.org/2020.icon-demos.5
https://aclanthology.org/2020.icon-demos.5
https://doi.org/10.1109/ACCESS.2020.2987842
https://doi.org/10.1109/ACCESS.2020.2987842
https://doi.org/10.1109/ACCESS.2020.2987842
https://aclanthology.org/2024.iscls-1.8
https://aclanthology.org/2024.iscls-1.8
https://doi.org/10.35940/ijrte.B1761.078219
https://doi.org/10.35940/ijrte.B1761.078219
https://doi.org/10.34028/iajit/17/1/5
https://doi.org/10.34028/iajit/17/1/5
https://doi.org/10.34028/iajit/17/1/5
https://aclanthology.org/W12-4701
https://aclanthology.org/W12-4701
https://aclanthology.org/W19-7501
https://aclanthology.org/W19-7501
https://doi.org/10.18653/v1/2020.tlt-1.12
https://doi.org/10.18653/v1/2020.tlt-1.12
https://aclanthology.org/2022.icon-main.35
https://aclanthology.org/2022.icon-main.35

Shrikrishnamoori. 1909. Kavyalankarasitravrttih. Sri
Vani Vilas Press, Srirangam.

Ekaterina V. Shutova. 2011. Computational approaches
to figurative language. Phd thesis, University of
Cambridge.

Niraj Kumar Singh, Komal Naaz, and Soubhik
Chakraborty. 2023. Komala and kathora: A novel
approach towards classification of hindi poetry. ACM
Trans. Asian Low-Resour. Lang. Inf. Process., 22(6).

Krishnan Sriram, Amba Kulkarni, and Gérard Huet.
2023. Validation and normalization of DCS corpus
and development of the Sanskrit heritage engine’s
segmenter. In Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers pre-
sented at the 18th World Sanskrit Conference, pages
38-58, Canberra, Australia (Online mode). Associa-
tion for Computational Linguistics.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2023.
Chandojnanam: A Sanskrit meter identification and
utilization system. In Proceedings of the Compu-
tational Sanskrit & Digital Humanities: Selected
papers presented at the 18th World Sanskrit Confer-
ence.

Can Wang. 2022. Analysis of poetry style based on
text classification algorithm. Scientific Programming,
2022.

Dominik Wujastyk. 1978. Automatic scansion of san-
skrit poetry for authorship criteria. Bulletin - Associ-
ation of Literary and Linguistic Computing, 6(2):122—
135.

https://doi.org/10.1145/3589249
https://doi.org/10.1145/3589249
https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3
https://doi.org/10.1155/2022/2763380
https://doi.org/10.1155/2022/2763380

