
Computer Simulation of As.t.ādhyāȳı : Some

Insights

Pawan Goyal1, Amba Kulkarni2, and Laxmidhar Behera1,3

1 School of Computing and Intelligent Systems, University of Ulster, UK,
goyal-p@email.ulster.ac.uk,l.behera@ulster.ac.uk,

2 Department of Sanskrit Studies, University of Hyderabad, India,
apksh@uohyd.ernet.in,

3 Department of Electrical Engineering, IIT Kanpur, India,
lbehera@iitk.ac.in

Abstract. Pān. ini’s As.t.ādhyāȳı is often compared to a computer pro-
gram for its rigour and coverage of the then prevalent Sanskrit language.
The emergence of computer science has given a new dimension to the
Pān. inian studies as is evident from the recent efforts by Mishra [7], Hy-
man [5] and Scharf [10]. Ours is an attempt to discover programming
concepts, techniques and paradigms employed by Pān. ini. We discuss how
the three sūtras: pūrvatrāsiddham 8.2.1, asiddhavad atrābhāt 6.4.22, and
s.atvatukor asiddhah. 6.1.86 play a major role in the ordering of the sūtras
and provide a model which can be best described with privacy of data
spaces. For conflict resolution, we use two criteria: utsarga-apavāda re-
lation between sūtras, and the word integrity principle. However, this
needs further revision. The implementation is still in progress. The cur-
rent implementation of inflectional morphology to derive a speech form
is discussed in detail.

Key words:

Pān. ini, As.t.ādhyāȳı, Computer Simulation, Conflict Resolution, Event
Driven Programming, Task Parallelism

1 Introduction

Pān. ini’s As.t.ādhyāȳı is often compared to a computer program for its rigour
and coverage of the then prevalent Sanskrit language. It is well known that the
As.t.ādhyāȳı is not as formal as a computer program. But at the same time, we
find many features of modern day computer programming in it. This is a quest to
discover programming concepts, techniques and paradigms employed by Pān. ini
in writing a grammar for Sanskrit in the form of the As.t.ādhyāȳı. In order to do
so, we try to ‘simulate’ the grammar following modern programming practices.
We hope, in the process, we may encounter something that may lead to new
programming concepts altogether.
As has been rightly pointed out by Scharf[10], it is very much crucial to define

what exactly one is going to simulate: is it the As.t.ādhyāȳı alone or the As.t.ādhyāȳı
and vārtikās or the grammar as described by Pātañjali in his Mahābhās. ya? At
this point in time, we are still open, however our efforts will be to restrict our-
selves to the As.t.ādhyāȳı as far as possible.
Within the As.t.ādhyāȳı itself, sūtras are interpreted in more than one way, there
are controversies over the domain of adhikāra sūtras, etc. The sūtras being too
many, it is not within the reach of a human being to ensure the consistency
with different interpretations. It is therefore a challenge for computer scientists
to design a system that simulates the As.t.ādhyāȳı and at the same time provide
a facility to test the consistency of the whole system for the chosen hypothe-
sis/interpretation.
The paper has been organised as follows: In section 2, we describe the earlier ef-
forts that deal with the implementation and principles of the As.t.ādhyāȳı. In sec-
tion 3, we describe Pān. ini’s process from a programming perspective. The role of
three sūtras: pūrvatrāsiddham 8.2.1, asiddhavad atrābhāt 6.4.22, and s.atvatukor
asiddhah. 6.1.86 in the ordering of the sūtras is discussed. The discussion of
these sūtras lead to a model that can be best described with privacy of data
spaces. Section 4 deals with the actual implementation, in particular modules
for automatic rule triggering and conflict resolution. Challenges, exceptions and
problems are described in section 5,6 and 7 respectively. Finally, we discuss fu-
ture work and give an example of derivation of rāmān. ām, genitive plural of the
nominal stem rāma.

2 Earlier efforts

There have been attempts to model Pān. ini’s As.t.ādhyāȳı by Mishra[7] and Scharf[10].
Mishra has proposed a structure for developing a lexicon on Pān. inian principles.
His system shows the rules involved in the morpho-phonemic derivation using
manually developed lexicon rich with feature structure. This may serve as a good
model to discover different attributes of the lexicon used by Pān. ini, especially
the non-formal or extra linguistic features which Pān. ini has used. But this sys-
tem in its true sense is not the simulation of the As.t.ādhyāȳı as it does not give
any insight about choice and ordering of the rules in the derivation process.
Scharf has implemented sandhi, nominal declension and verbal conjugation,
closely following Pān. inian rules. However, in his implementation of nominal de-
clension also the rules for different stems are selected and ordered manually. He
himself admits that “... it is not a close model of Paninian procedure”[10]. In
a sense, his implementation of noun declensions is closer to the arrangement of
sūtras in the Siddhāntakaumud̄ı[12]. It does not give us a flavour of the Pān. inian
arrangement of rules.
If one decides to simulate the As.t.ādhyāȳı on computer, two important questions
one needs to answer are:

– How are the rules triggered?
– If more than one rule is triggered then how is the conflict resolved?

Tradition has extensive literature on conflict resolution. The Paribhās. enduśekhara
of Nāgeśa Bhat.t.a discusses many paribhās. ās (‘metarules’) that are necessary to
understand the interaction of rules, and conflict resolution. The major paribhās.ā
dealing with conflict resolution is

paranityāntaraṅgāpavādānām uttarottaram. bal̄ıyah.

Kiparsky[6] explains how the principle of economy (lāghava) leads to the con-
cepts of normal blocking and collective blocking which govern conflict resolution.

3 As.t.ādhyāȳı: A Programming Perspective

The whole purpose of the Pān. inian enterprise is to model the communication
process. The communication process has two parts – the speaker expressing his
thoughts through a language string (generation) and the listener understanding
the language string (analysis). Pān. ini’s As.t.ādhyāȳı models the generation. The
process of generation is further assumed to have intermediate levels as in the
following figure (Bharati et al.[1]: 63).

--- semantic level (what the speaker has in mind)

|

|

--- karaka level

|

|

--- vibhakti level

|

|

--- surface level (uttered sentence)

Fig. 1. Levels in the Paninian model

Thus the input for the As.t.ādhyāȳı is the semantic level description of thoughts
in the speaker’s mind in terms of the Sanskrit lexicon, and the output is the sen-
tence in Sanskrit which conveys the same thoughts within the constraints of the
language.

The sūtras in the As.t.ādhyāȳı are broadly classified into the fillowing six
types:4

4 sam. jñā ca paribhās. ā ca vidhir niyama eva ca

atideśo’dhikāraś ca s.ad. vidham sūtralaks.an. am

1. sam. jñā
2. paribhās. ā
3. vidhi
4. niyama
5. atideśa
6. adhikāra

Most of the rules in the As.t.ādhyāȳı are of the type vidhi.
Traditionally recognized divisions of the As.t.ādhyāȳı, that is, eight adhyāyas each
divided into four pādas, do not, in general, mark off the topics found therein.
The topics dealt with in each of the eight adhyāyas are as follows:

– The first adhyāya serves as an introduction to the work in that it contains
1. The definitions of the majority of the technical terms used in the work,
2. Most of the metarules, and
3. Some operational rules.

The chapter contains rules mainly related to the indicators (it) (1.3.2-1.3.9),
assignment of ātmanepada and parasmaipada suffixes (1.3.12-1.3.93), kāraka
definitions (1.4.23-1.4.55) and nipātas (1.4.56-1.4.97).

– The second adhyāya contains four major divisions:
1. Rules of compounding (2.1.3-2.2.38)
2. Assignment of cases (2.3.1-2.1.73)
3. Number and gender of compounds (2.4.1-2.4.31)
4. luk elision (2.4.58-2.4.84)

– The third, fourth and fifth adhyāyas deal with suffixes. The third adhyāya
contains the suffixes that are added to a verbal root, while the other two
contain the suffixes that are added to a nominal stem.
In short, the first five adhyāyas build the basic infrastructure that is neces-
sary to set up the proper environment to carry out the derivations smoothly.

– The sixth, seventh and eighth adhyāyas deal with the sūtras that bring about
a series of transformations related to continuous text (samhitā), word accent,
and stem shape.

3.1 Data + Algorithm = Program

The main body of the As.t.ādhyāȳı is called the sūtrapāt.ha (set of rules) and
consists of around 4,000 rules. It is accompanied by five ancillary texts: the 14
pratyāhāra sūtras, the dhātupāt.ha (list of verbal roots), the gan. apāt.ha (several
collections of particular nominal stems), un. ādi sūtras, and liṅgānuśāsana (sūtras
describing the gender of different words). Thus we see a clear separation of data
(the ancillary texts) from the algorithms (sūtras).

3.2 Data Encapsulation

The third generation languages were based on the fundamental concept of Data
+ Algorithm = Program. On the other hand, in Object Oriented Programming

there is an encapsulation of data and algorithms in the form of objects. Both
these aspects are not contradictory to each other. We require the separation of
extensive data from algorithms. At the same time in certain cases, we also require
the active binding of data with procedures. In Pān. ini’s system we notice an intel-
ligent use of both these features. As reported earlier, there is a clear separation
of data from algorithms. At the same time, the data in the database consisting
of the ancillary texts is encapsulated. All the indicators used by Pān. ini trigger
some functions: For example, the indicators that accompany each root (dhātu)
in the dhātupāt.ha mark the dhātu as either ātmanepada or parasmaipada, the
ñi indicator in verbal roots indicates that such a root takes the suffix kta (which
is otherwise a past passive participle) in the sense of present tense, as in

ñidhr. s. ā + kta - > dhr. s.t.a

3.3 Subroutines

The rules related to a particular task are grouped together. For example, consider
the following sūtras which identify sounds used as markers (anubandha) in the
texts that comprise the grammar.

– upadeśe aj anunāsika it 1.3.2

– hal antyam 1.3.3

– na vibhaktau tusmāh. 1.3.4

– ādir ñit.ud. avah. 1.3.5

– s.ah. pratyayasya 1.3.6

– cut.ū 1.3.7

– laśakv ataddhite 1.3.8

If we take into account the recurrence (anuvr. tti) of terms from preceding
sūtras, the rules may be rewritten (indicating the anuvr.tti by indentation) as

– upadeśe

• ac anunāsika (=) it 1.3.2

• hal antyam 1.3.3

∗ na vibhaktau tusmāh. (=it) 1.3.4

• ādih.
∗ ñit.ud. avah. (=it) 1.3.5
∗ pratyayasya

· s.ah. (=it) 1.3.6
· cutū (=it) 1.3.7
· laśaku (=it) ataddhite 1.3.8

Translation of this set of rules into a simple algorithm will show the parallel
between Pān. ini’s sūtras and a computer algorithm.

if(input is from UPADE‘SA)

Mark the ANUNASIKA AC as INDICATOR

if(last var.na(X) is HAL)

if(the input is neither VIBAKTI nor TUSMA)

Mark X as INDICATOR

endif

endif

if(the beginning syllable(Y) is ~ni or .tu or .du)

Mark Y as INDICATOR

endif

if(the input is a PRATYAYA)

if(Y is .sa)

MARK Y as INDICATOR

endif

if(Y is from ca_varga or .ta_varga)

Mark Y as INDICATOR

endif

if(the input is NOT TADDHITA)

if(Y is either la or ‘sa or ka_varga)

Mark Y as INDICATOR

endif

endif

endif

There are many such instances of well-defined subroutines spread all over the
As.t.ādhyāȳı.

3.4 Operations

The nature of the problem the As.t.ādhyāȳı deals with indicates that the typical
operations involved are various kinds of string operations. They are of four types.

– assigning a name
– substitution
– insertion
– deletion

It has been already recognized ([4], [2]) that Pān. ini expresses all such rules
as context sensitive rules. He ingeniously uses cases (vibhaktis) to specify the
context. A typical context sensitive rule is of the form

αβγ ⇒ αδγ

Pān. ini uses 5th and 7th case to indicate the left and right context respectively,
6th case to indicate the element that will undergo a change and 1st to indicate
what it will change to. Here is an example from the As.t.ādhyāȳı.

ato ror aplutād aplute (ut ati sam. hitāyām) 6.1.113

at{5} ru{6} apluta{5} apulta{7} (ut{1} at{7})
apluta at ru apluta at == > apluta at ut apluta at
gloss: change the ‘ru’ preceeded and followed by an ‘a-pluta a’ to ‘u’.

3.5 Ordering of the rules

Three sūtras in the As.t.ādhyāȳı play an important role in deciding the order of
the rules. These sūtras are

– pūrvatrāsiddham 8.2.1
– asiddhavad atrābhāt 6.4.22
– s.atvatukor asiddhah. 6.1.86

We discuss each of these sūtras and show how they govern the ordering.

Asiddham Traditionally the As.t.ādhyāȳı is divided into 2 parts – sapāda-
saptādhyāȳı and tripād̄ı. The rule pūrvatrāsiddham (8.2.1) makes the output
of the rules in the latter part unavailable to the earlier rules. Further this rule
being the adhikāra sūtra makes the output of each of the following sūtras un-
available to the previous rules within the tripād̄ı. This necessarily implies that
the tripād̄ı should follow the sapāda saptādhyāȳı and that the rules within the
tripād̄ı should also be followed linearly or sequentially. Based on this, it is very
likely that one would be tempted to model tripād̄ı as a single subroutine, where
all the rules are applied sequentially and the intermediate output is stored in
local variables.
But then it would not be a faithful representation. Pān. ini did not state it this
way. The sequential ordering of sūtras in the tripād̄ı and application of tripād̄ı
sūtras after the application of rules from the sapāda saptādhyāȳı is an inference
we draw from the adhikāra sūtra. Instead of inferring, let us try to understand
precisely what Pān. ini has said. The word asiddham means – (regarded as) not
existing ([8], p. 120, col. 3). To give an analogy, in programming paradigm, the
variables local to a subroutine are regarded as not existing(or not visible) with
respect to the calling function. We model the sūtra pūrvatrāsiddham as follows:
The result of applying the sūtras in this section should not be available to the
earlier sūtras in the sapāda saptādhyāȳı. Similarly, the sūtra being the adhikāra
sūtra, the result of the later sūtra in the tripād̄ı should also be not available
to the earlier sūtras in the tripād̄ı. It essentially means that each of the sūtras
in the tripād̄ı section should have its own data space and the data space of the
later sūtras be invisible to the earlier sūtras. Thus this model does not imple-
ment tripād̄ı as a single subroutine, but keeps each of the rules (or a group of
rules forming a subroutine) as a single separate unit. The invisibility of the data
spaces of later rules to the earlier rules ensures that the rules are applied only
sequentially.

Asiddhavat Within the sapāda saptādhyāȳı there is a section known as the
asiddhavat section. The sūtra

asiddhavad atrābhāt 6.4.22

is translated by Vasu([13]) as
“The change, which a stem will undergo by the application of any of the rules
from this sūtra up to 6.4.129 is to be considered as not to have taken effect,
when we have to apply any other rule of this very section 6.4.23-6.4.129”.
As an example, let us consider the derivation of śādhi from śās + hi.
Two sūtras

hujhalbhyo her dhih. 6.4.101

and

śā hau 6.4.35

are applicable.
6.4.101: śās + hi ⇒ śās + dhi
6.4.35: śās + hi ⇒ śā + hi

As is evident from this, if 6.4.101 is applied, then the conditions for applying
6.4.35 are not met and hence it would not be applicable. Similarly, if 6.4.35 is
applied first, then the conditions for 6.4.101 would not be met and it would
not be applicable. The word asiddhavat means ‘as if it is not applied’. So after
applying 6.4.35, though śās changes to śā, still the result is not visible to 6.4.101
and hence 6.4.101 changes hi to dhi. As a result of both these rules, śās + hi
changes to śādhi. Thus instead of stating the rule as

R: a b ⇒ c d

Pān. ini states it as a combination of two rules:

R1 : ab ⇒ cb

R2 : ab ⇒ ad

and thereby one may conclude that Pān. ini achieves economy.5 However, if one
looks at the complete asiddhavat section, one finds only handful of examples
that require parallel application of rules, and hence it is not worth stating that
economy is achieved. Nevertheless, it provides an example of task parallelism.
Further this also has an impact on parameter passing. Since the same input
should be available to all the rules in this section, the input should be passed as
a value. But at the same time, a local copy of it will undergo necessary changes.
One or more processes run in parallel, and the consolidated result of all these
processes is then passed back to the calling function.

5 If there were n1 rules of type R1 and n2 rules of type R2, then there would have been
n1 ∗n2 (possible combinations) rules of type R. However, by making them applicable
in parallel there are only n1 + n2 rules, and thus economy is achieved.

Though this interpretation also seems to be consistent with what is said in the
sūtra, still it is also an inference. Pān. ini never mentions that the sūtras are to be
applied in parallel(Bronkhorst[3]). He uses the term asiddhavat. So to be faithful
to the Pān. ini’s system then, the results of the application of sūtras in this section
should not be visible to other sūtras of the same section. This is possible, if we
assign a separate data space to the rules in this section, which is not visible to
the rules within this section.

Asiddhah. The third type of asiddha is provided by the sūtra

s.atvatukor asiddhah. 6.1.86

This rule, which occurs under the adhikāra ekah. pūrvaparayoh. 6.1.84 in effect up
to 6.1.110, says that the single replacement (ekādeśa) that will result through the
application of rules under this adhikāra, is asiddha with respect to the two pro-
cesses, viz. s.atva and tuk. That is, the result of application of rules in the ekādeśa
section is invisible to the rules which correspond to the s.atva or tuk processes.
Thus here again, there is a concept of data space, the result of the operations in
the ekādeśa section are written to this data space, which are unavailable to the
rules performing s.atva and tuk operations.

3.6 Programming Model

The typical grammarians view of the As.t.ādhyāȳı may be stated as follows:
‘The rules in the sapāda saptādhyāȳı seek for an opportunity to act on an input
by finding conditions (nimitta) in which they are applicable. In case there is a
conflict, there are certain conflict resolution techniques (described as paribhās. ā),
which come into play. The conflict resolver selects one rule and effects changes
in the data space.’
This model is described in the Figure 2.

Thus we notice a striking similarity between the event driven programming
and triggering of As.t.ādhyāȳı rules. The nimitta or the context triggers an appro-
priate rule. The sam. jñā sūtras for example, assign different ‘attributes’ to the
input string, thereby creating an environment for certain sūtras to get triggered.
The adhikāra sūtras assign necessary conditions to the sūtra for getting trig-
gered. Paribhās.ā sūtras provide a meta language for interpreting other sūtras.
The niyama and atides.a sūtras put restrictions on or extend the domains in
which the sūtras are to be applied. Finally it is the vidhisūtras which effect the
transformations.

The rules fall under four categories: asiddham, asiddhavat, asiddha and the
rest6. Each of these rules has its own data space where it writes its own output
(see Table 1). The visibility of these data spaces to different categories of rules
is described in Table 2.

Rules

Applicable Rules

Data Spaces

Conflict
Resolver

Winner Rule

Conflict Resolution

Winner modifies

data space

Fig. 2. Application of rules

Now we illustrate, with the help of examples, how the privacy of data spaces
lead to the correct generation in case of asiddhavat, asiddham and asiddhah.
sections.

– asiddhavat Consider the derivation of śādhi : imperative second person sin-
gular form of the root śās. The derivation of our interest starts with the
data space D0 having śās + hi in it. Now two sūtras, viz. hujalbhyo her
dhih. (6.4.101) and śā hau(6.4.35) are applicable. The constraint resolver re-
turns both the rules. Thus there are two different orders of applying these
rules. Let us assume that 6.4.101 is applied first. Then hi changes to dhi.
This result will be available in the data space D1 which is not visible to
sūtra 6.4.35. As such, 6.4.35 applies on the contents of the data space D0

and changes śās to śā. This change also gets stored in D1. Thus now D1

contains śā + dhi. As is clear, even if the order of application of sūtras is
changed, we get the same result as in D1.
Consider another derivation: jahi, from the root han. The step in the deriva-
tion in which we are interested is when the data space D0 has han + hi in

6 This model is an improvement over the one emerged while teaching a course on
‘Structure of Ashtadhyayi’ at Tirupati, in 2006-07 (described in ‘Conflict Resolution

Techniques in Astaadhyaayii’ by Varkhedi and Sridhar (To appear)): the major shift
is in modelling with private data spaces. The interactions of the rules belonging to
s.atva and tuk sections with the other rules is also made explicit. The current model
based on privacy of data spaces has its seed in the discussions Amba Kulkarni had
with Vineet Chaitanya.

Table 1. Affected Data Spaces

Rule Affected Data Space

siddha D0

asiddhavat D1

asiddhah. (rules in ekādeśa section) D2

asiddham (Tripād̄ı - s.atva) D8.2.1

D8.2.2

D8.2.3

.

.
D8.4.68

Table 2. Visible Data Spaces

Rule Visible Data Spaces

Rest D0, D1, D2

asiddhavat D0, D2

s.atva and tuk D0, D1

asiddham(Tripād̄ı - s.atva) D0, D1, D2, D8.2.1

8.2.2 D0, D1, D2, D8.2.1, D8.2.2

8.2.3 D0, D1, D2, D8.2.1, D8.2.2, D8.2.3

. .

. .

8.4.68 D0, D1, D2, D8.2.1,..., D8.4.68

it. hanter jah. (6.4.36) changes the input to ja + hi. Since this sūtra is from
the asiddhavat section, the output is written to data space D1, and hence is
not visible to any other rule in the asiddhavat section; in particular to ato
heh. (6.4.105). Therefore there is no question of ato heh. getting triggered.

– asiddhah. Let the data space D0 has adhi + i + lyap. Now two sūtras, viz.
akah. savarn. e d̄ırghah. (6.1.101) and hrasvasya piti kr. ti tuk (6.1.71) are appli-
cable. With the data space model, we explain how the order of the rules gets
fixed automatically. Let us assume that rule 6.1.101 is applied first. Since
this rule belongs to the ekādeśa section, the result, viz. adh̄ı + lyap will
be stored in the data space D2, and hence will not be visible to 6.1.71, as
such the latter rule operates on the data in D0, and changes it to adhi + i
+ tuk + lyap. Again at this stage, 6.1.101 can see the contents of D0, and
hence changes it to adh̄ı + tuk + lyap. Had we applied 6.1.71 first and then
6.1.101, it would have resulted in the same string. Or in other words, the
order 6.1.71 and then 6.1.101 is optimal, than 6.1.101, followed by 6.1.71
followed by 6.1.101 again. Application of 6.1.101 before 6.1.71 being redun-
dant, implementation of preferred order is very straight forward.
Consider another example. The input of our interest is ko + asicat stored in
the data space D0. eṅah. padāntād ati (6.1.109) changes it to kosicat. This

result is stored in the data space D2. As such this result is not visible to
the ādeśapratyayoh. (8.3.59) from the s.atva section and thus 8.3.59 is not
applicable. Thus the undesirable result kos.icat is not generated.

– asiddham Finally take the example of vac + ti. Two sūtras, viz. coh. kuh.
(8.2.30) and stoh. ścunā ścuh. (8.4.40) are applicable. Since the result of 8.4.40
(stored in D8.4.40) is not visible to 8.2.30, application of 8.4.40 before 8.2.30
will be redundant. After application of 8.2.30, there will not be any scope
for 8.4.40, giving the desired result vakti.

Thus, these examples illustrate how the concept of data spaces represent the
simulation of As.tādhyāȳı faithfully.

4 Implementation

Simulation of the As.t.ādhyāȳı involves the following factors:

1. Interpretation of sūtras using the metalanguage described by Pān. ini in the
As.t.ādhyāȳı,

2. Faithful representation of sūtras,
3. Automatic triggering of rules, and
4. Automatic conflict resolution.

In this paper we have concentrated only on 3. For conflict resolution we have
used two main principles: An apavāda rule and a rule belonging to the aṅga sec-
tion are given priority over the others. Regarding the representation of sūtras,
we use regular expressions to represent the patterns, and positions to represent
the left and right context, the string that undergoes a change and the resultant
string.

The model of the As.t.ādhyāȳı that we are implementing is presented in the
Figure 3.

As the diagram shows, we have classified the rules in the following way:

1. E - Rules belonging to ekādeśa
2. A - Rules belonging to asiddhavat
3. R - Rules belonging to s.atva vidhi
4. W - Rules belonging to tuk vidhi
5. T - Rules belonging to tripād̄ı, excluding s.atva vidhi.
6. O - All other rules

The diagram shows the data flow from one data space to another by the invoca-
tion of different types of rules. A rule represented by an arrow takes input from
the data space at the tail of the arrow, and writes the output to a data space

Fig. 3. Modelling As.t.ādhyāȳı

indicated by the head of the arrow. In the beginning, the input string is stored
in the dataspace D0. A rule from O section can see the contents of only three
data spaces viz. D0, D1 and D2. At any stage, when a rule from O section is ap-
plicable, among these three data spaces, the data space with latest information
is chosen as an input to the rule. If D0 is the input data space, the output is
written to itself. But if D1 has the latest data, then the output is written to D0.
In case D2 has the latest data, then the output is written to D0. We illustrate
this with an example from asiddhavat section.

Fig. 4. parallel execution in asiddhavat

Let D0 contain han + hi, and suppose it has the latest data among all the data
spaces. Now the rule hanter jah. 6.4.36, which is from the asiddhavat section (A)
is applicable. This rule then takes the latest data (in this case from D0), and
writes the output to D1. So D1 contains ja + hi, whereas D0 still continues to
have han + hi in it. The rule ato heh. 6.4.105 can see only D0 and D2, and can’t
see D1. Hence, 6.4.105 will not be applicable, thereby the wrong generation is
stopped. Similarly when the rules from the ekādes.a section are triggered, they
write the output to the data space D2. When no more rules are triggered, then
the system enters into a stable state SD0. This stable state is different (SD1) if
the system is in the state corresponding to ekādes.a. While in one of the stable
states, the rules in the tripād̄ı section get triggered sequentially. If the system
is in the ekādes.a state, and no rule from tripād̄ı gets triggered, then the rules
from s.atva section also do not get triggered. But if the rules in tripādī have been
applied, then s.atva rules may get triggered.
If more than one rule from the asiddhavat section is triggered, then their be-
haviour is shown in the Figure 4.
We have started the implementation for getting śabdarūpa of nominals given
the prātipadika, along with the vacana, liṅga, and vibhakti for which we need to
decline.

4.1 Hierarchy

We take the input as a sentence. Thus given an input such as rāma(puṁliṅgam
+ekavacanam+kartr.) vana(napuṁsakaliṅgam+ekavacanam+karma) gam(lat.+kartari),
machine should produce rāmah. vanam gacchati, along with the trace of an al-
gorithm showing the exact sequence of the applied rules, and conflict resolution,
if any. A sentence has padas as its children. Each pada will have a root word
along with the attributes. We will first run the program on the leaf nodes and
will keep on merging these together until we reach the sentence. Thus for the
example taken, we have the following children in the beginning:

– rāma(puṅliṅa+ekavacana+kartā)
– vana(napuṅsakaliṅa+ekavacana+karma)
– gam(lat.+kartari)

Each child has a root word along with the attributes. Henceforth we call this
structure ‘input DS’. We pass the children one by one through the program.
Finally, we have different padas, and that will be the output (rāmah. vanam
gacchati).

4.2 Structure of input DS

An input DS contains an array of words along with their attributes. It allows the
addition of a particular attribute as well as removal if necessary. We have allowed
substitution as well as augmentation in the structure. Let us briefly discuss these
two operations:

Augmentation The augmentation process needs two parameters: a string to
be augmented and the position where it is to be augmented. The function will
look at the rules applicable (such as ādyantau t.akitau 1.1.46 and midaco’ntyāt
parah. 1.1.47), and the change is effected at appropriate position in the input DS.

Substitution Substitution is also permitted within the input DS. The param-
eters specified are the same as in augmentation. The rules such as ṅic ca 1.1.53,
anekāĺsit sarvasya 1.1.55, ādeh. parasya 1.1.54 and alo’ntyasya 1.1.52 are the
governing rules out of which one is applied depending upon the input DS and
after the substitution the DS is returned.

4.3 Structure of a rule

A typical vidhi rule of the As.t.ādhyāȳı has a context sensitive form:

αβγ ⇒ αδγ

α and γ specify the context, β is the domain which undergoes change and δ is
the resultant/changed part of the string.
Corresponding to each rule now we require three functions:

1. a function that checks whether the rule is applicable or not,
2. a function to compute the result if the function is applicable, and finally
3. a function that returns the conditions under which the rule is applicable.

Thus:

1. Each rule has been stored as a structure involving patterns that stores the
conditions under which the rule is applicable.

2. Then we apply pattern matching to come up with the list of rules triggered
for a given input DS. The application part has been stored separately, which
takes input as the rule number of the winner rule and changes the input DS,
accordingly.

3. In case there is more than one rule applicable, then the conflict resolution
module looks at the conditions for each of the applicable rules and chooses
the “winner rule”, after resolving the conflict if any. Conflict resolution is
discussed in the next section.

4.4 Modules

Each prakr. ti as well as the pratyaya part of the pada passes through a series
of modules. The modules are of 2 types. Some modules just look at the input
and assign different names (sam. jñās) to the different parts of the input string;
others transform the input string.

Module for assigning sam. jñās to the prakr.ti A prakr.ti is assigned an
appropriate sam. jñā using the

– databases, or
– current state of the input string.

For example, a prakr.ti gets the sam. jñā dhātu if it is found in the dhātupāt.ha,
the sam. jñā sarvanāma if it is found in the gan.a sarvādi, etc. Sometimes some
pratyaya creates a context for certain sam. jñās such as bha, ghi, nad̄ı, etc.

it module: The dhātus in the dhātupātha, pratyayas, etc. are given with some
markers commonly called anubandhas and termed it by Pāṅini. These markers
need to be identified and marked, before the processing starts. The module
takes as input a particular upadeśa and marks the varn.a as it. The rules 1.3.2 to
1.3.8 described in section 3.3 mark the its. Finally, the phonemes marked it are
deleted from the input string by the rule tasya lopah. 1.3.9. However the markers
are stored in the DS, as they actively bind the procedures.

Module for pratyaya vidhi In this module, a pratyaya undergoes some
changes based on the characteristics of the aṅga7 and pratyaya. All the rules
of this particular vidhi are listed as an array ‘pratyaya vidhi rule’ in a particular
data structure as follows:

1. aṅga ending: Denotes the context of the endings of an aṅga.
2. aṅga attrib: Represents the attributes (characteristics) of the aṅga.
3. pratyaya: If there are some special contexts for the pratyaya.
4. pratyaya attrib: Represents the attributes of the pratyaya.
5. rule number : Keeps the information of the rule number.

The data structure has been made in Java, and constructors are made to directly
encode the conditions of a particular pratyaya vidhi rule. For example, the rule
ato bhisa ais has been encoded as:

list_pratyaya_vidhi_rule[0]=new pratyaya_vidhi_rule(‘‘7-1-9’’,

‘‘ataH bhisaH ais’’, ‘‘a’’, ‘‘’’, ‘‘’’, ‘‘root(bhis)’’);

The ‘[0]’ indicates this is the first rule of the array. The rule constructs a ‘pratyaya
vidhi rule’ which needs the ending of the aṅga to be a, and the pratyaya to be
the one with its original form as bhis. The rule number too has been stored. All
the rules of pratyaya vidhi are stored in a similar fashion. When a particular
‘input DS’ is passed through this array, another array ‘triggered pratyaya vidhi
rule’ enlisting all the rules which are applicable is produced. Finally, the conflict
resolver decides the ‘winner rule”.
After the winner rule has been selected, the subroutine ‘apply’ is called. For ex-
ample, the above rule substitutes ais for the case ending bhis after a prātipadika

7 In accordance with yasmāt pratyayavidhis tadādi pratyaye ’ṅgam 1.4.13, the prakr. ti

to which an affix has been provided, is termed aṅga.

ending in a. The input DS is passed through the substitution subroutine with
the information that ais is to be substituted. Thus, for the input DS with
(rāma(attributes)+bhis(attributes)), the rule 7.1.9 will apply as ‘substitute(input
DS, ais, 1)’, where we pass the information that substitution has to be done at
index 1. The result of this substitution will be: (rāma(attributes)
+ais(attributes)).

Module for aṅga vidhi In this module, an aṅga undergoes some changes
based on the characteristics of the aṅga and pratyaya. The rules are listed in
the same data structure as used for rules belonging to pratyaya vidhi. The rules
are stored in an array ‘list anga vidhi rule’. Consider the encoding of the rule
aco ñn. iti which states, “Before the affixes having an indicatory ñ or n. , vr.ddhi
is substituted for the end vowel of a stem”.

list_anga_vidhi_rule[9]=new anga_vidhi_rule(‘‘7-2-115’’,“acah. ñn. iti”,
ac,“”,“”,‘‘N-it|~N-it’’);
This is the tenth rule of the array corresponding to aṅga vidhi rules. From the
encoding, we can infer the conditions that the aṅga should be ending in a vowel
(ac) and the pratyaya should have either n. or ñ as a marker.
After passing the input DS through the array, we will get the array ‘triggered
anga vidhi rule’ upon which the conflict resolution module will be called giving
the winner rule. Finally the subroutine ‘apply’ will act. Consider the formation of
the nominative singular (prathamā ekavacana) of the root go. Since the pratyaya
is termed sarvanāmasthāna, it gets the characteristics of indicatory n. by the rule
goto n. it 7.1.90, a rule in pratyaya vidhi. In aṅga vidhi, the winner rule will be
7.2.115 and it will do vr.ddhi on the end vowel of go giving the structure as
(gau(attributes)+as(attributes)).

Module for asiddhavat In the asiddhavat section, we have certain rules be-
longing to both pratyaya vidhi and aṅga vidhi. The speciality of this section is
that a rule in this section does not see the changes made by other rules in the
same section. To implement this, the rules have been grouped in two separate
arrays, belonging to pratyaya vidhi and aṅga vidhi. The same input string is
passed to these arrays. The pratyaya vidhi rules may change the pratyaya, and
the aṅga vidhi rules may change the aṅga. The aṅga from the aṅga vidhi module
and the pratyaya from the pratyaya vidhi module are taken together to the input
DS which is available to other rules. Let us consider the formation of śādhi. The
input DS that is passed to this section is (śās(attributes) + dhi(attributes)).
We are passing the same copy to both the aṅga vidhi and the pratyaya vidhi
modules of the asiddhavat section. In each of the two vidhi modules, if more
than one rule is triggered, the conflict resolution module selects one winner for
each type of the rules separately. The module is described in the Figure 4.

Module for sandhi We have enlisted all the rules belonging to sandhi in an
array ‘list Sandhi rule’. The encoding format is the same as the one used for the

pratyaya vidhi and aṅga vidhi modules. For example, the conditions for the rule
eco’yavāyāvah. 6.1.83 have been stored as:

list_Sandhi_rule[1]=new Sandhi_rule

(‘‘6-1-78’’,‘‘(eco)83 ayavAyAvaH’’,ec,ac);

In this case, we have constructors which build the object ‘Sandhi rule’ with the
information of the last letter of the first word and initial letter of the second
word. The rule states, “The vowels belonging to the pratyāhāra ec, are replaced
by ay, āy, av, āv respectively provided the second word starts with a vowel.”
The processing is the same as discussed in the pratyaya vidhi section.

Module for tripād̄ı In the rules belonging to this section, we need not have
a conflict resolution module since rules are applied in linear order. So, we need
only to check the conditions and apply the rule if the condition is satisfied. This
module is visited after we are sure that the output has become stable after going
through the other modules.

Module for Conflict Resolution: The module is made independent of the
category of the rules. It takes as input two rules at a time and returns the rule
that blocks the other (it returns the superior rule). Let the two rules be Rule A

and B. If the domain of rule A is properly included in the domain of rule B, then
A blocks rule B. While applying blocking, we look at the following properties in
the decreasing order of their priority:

1. Whether there is conflict (pratis.edha) in the rules: If the two rules present no
pratis.edha, i.e. application of rule A doesn’t bleed (depriving of conditions)
rule B, and A and B are in the order of the As.t.ādhyāȳı, we apply the rules
in order.

2. Word integrity principle: If a rule from ekādeśa interacts with a rule from
the aṅga vidhi module, the rule from the aṅga vidhi module is the winner
using this principle.

3. The environment-changing rule is given precedence over the rule that is not
environment-changing. Thus if rule A bleeds rule B, but rule B doesn’t bleed
rule A, rule A is the winner due to changing the environment.

4. Whether a rule is specific to a particular initially taught item: If a rule
specifies a particular initially taught item, it is preferred over other rules.
For example:
We consider the formation of the accusative singular (dvit̄ıyā ekavacana)
of the base rāma. When it passes through the sandhi module, it has the
structure (rāma(attributes) + am(attributes)). All the rules in the sandhi
module check for the applicability conditions and the ‘triggered Sandhi rule’
array contains the following rules:
(a) ād gun. ah. 6.1.87
(b) akah. savarn. e d̄ırghah. 6.1.101
(c) prathamayoh. pūrvasavarn. ah. 6.1.102

(d) ato gun. e 6.1.97
(e) ami pūrvah. 6.1.107

From the above stated rules, the rule ami pūrvah. is applicable only when
the second item has a belonging to the initially introduced item am. This
initially introduced item restricts the domain for this rule and it is preferred
over other rules.

5. Whether a rule is specific to a particular feature of a domain: Consider the
formation of the dative plural (caturth̄ı bahuvacana) of the base rāma. When
it passes through the aṅga vidhi module, it has the structure (rāma(attributes)
+ bhyas(attributes ‘bahuvacana’)). After the condition checking the ‘trig-
gered anga vidhi rule’ array contains the following rules:

(a) supi ca 7.3.102
(b) bahuvacane jhaly et 7.3.103

Out of the above two rules, rule 7.3.103 requires a special property of bahu-
vacana, which makes it preferable over the rule 7.3.102.

6. Whether a rule is applicable for fewer sounds (al): A rule involving fewer
phonemes in the context is given more priority over the one involving more.

5 Challenges

Whether to include vārtikās?
In the traditional view, there are vārtikās that handle those cases where the
rule vipratis.edhe param kāryam or the paribhās.ā paranityāntaraṅgāpavādānām
uttarottaram bal̄iyah. doesn’t give the right result. The question arises whether
it is necessary to go for these vārtikās or we can resolve the conflicts without
resorting to the vārtikas. We enlist one of the cases below:
Formation of vāri + ṅe. We are at the structure vāri(napum. saka)+e(ṅ-it, sup).
The rules that are triggered are:

– iko’ci vibhaktau 7.1.73
– gher ṅiti 7.3.111

Rule 7.3.111 is the later rule and should be applied according to the principle
that a later rule takes precedence over an earlier one. However, it does not apply;
7.1.73 applies instead. For this there is a vārtikā vr.ddhyautvatr. jvadbhāvagun. ebhyo
num pūrvapratis.edhena which says that the later rule is not applicable when num
is ordained by a previous rule and one of vr.ddhi, autva, tr. jvadbhāva or gun. a is
ordained by a later rule. Till the implementation of the algorithm presented here,
we do not have a satisfactory answer for this.

6 Exceptions

There are certain exceptions in the As.t.ādhyāȳı which need to be handled sepa-
rately. Consider the formation of śivorcya.

– We have the form śivas + arcya. No rules from the sapāda saptādhyāȳı are
applicable.

– The rule sasajus.o ruh. 8.2.66 finds scope and is applied. Thus we have the
form:

śiva + ru + arcya

– After the u in ru will be marked as a marker(anubandha), leading to its
deletion (lopa).

śivar + arcya

– The rule bhobhagoaghoapūrvasya yo’́si 8.3.17 finds scope and will change the
structure to

śivay + arcya

which is an anis.t.a form. The apavāda of this rule, ato ror aplutād aplute (ut
ati sam. hitāyām) 6.1.113 gets ru in śivar by the sthānivadbhāva and checks
the application of 8.3.17. 6.1.113 changes the r to u giving the structure:

śiva + u + arcya

– The rule ād gun. ah. 6.1.87 is applicable giving the form:

śivo + arcya

– The rule eṅah. padāntād ati 6.1.109 is applicable giving the form:

śivorcya

Thus we clearly see that this is an exception for the adhikāra sūtra pūrvatra
asiddham.

7 Problems

Consider the formation of ramā + ṅe. The structure is:

ramā + e

The rule yāḋāpah. - 7.3.113 which sees the ṅit of the pratyaya and does the
āgama of yāt., which being t.-it, sits in the front, and we have

ramā + yai

The problem comes that the ṅit attribute is still there in yai and the rule gets
triggered again and again giving the form ramā+yāyā...yai. We need to seek
solution for this.

8 Future Work

It is necessary to understand how Pān. ini’s As.t.ādhyāȳı resolves the conflicts.
The current implementation is still primitive and not satisfactory. Pān. ini has
not mentioned any conflict resolution rules explicitly, but it seems he assumed
them implicitly. In the current implementation, the rules are represented using
manually coded patterns. It will be interesting to see if the machine can inter-
pret the rules automatically based on the vibhaktis and the meta rules. What
difference the yoga vibhāga makes in the form of output of conflict resolution
will an interesting issue to explore.

References

[1] Bharati Akshar, Vineet Chaitanya, Rajeev Sangal: Natural Language Processing:
A Paninian Perspective, Prentice Hall of India, New Delhi, 1995.

[2] Bhate, S. and Kak, S.: Panini’s grammar and Computer Science. Annals of the
Bhandarkar Oriental Research Institute vol. 72, 1993, 79–94.

[3] Bronkhorst, J.: Asiddha in the As.t.ādhyāȳı : A misunderstanding among the tra-
ditional commentators, Journal of Indian Philosophy, 8, 1980, 69–85.

[4] Cardona, G.: On translating and formalizing Paninian rules, Journal of Oriental
Institute, Baroda, vol. 14: 306-14.

[5] Hyman, M. D.: From Paninian Sandhi to Finite State Calculus, Proceedings of the
First International Sanskrit Computational Linguistics Symposium, ed. Gérard
Huet and Amba Kulkarni, 2007 .

[6] Kiparsky, P.: On the architecture of Pān. ini grammar, the lectures delivered at
the Hyderabad Conference on the Architecture of Grammar, 2002.

[7] Mishra, A.: Simulating the Paninian system of Sanskrit Grammar, Proceedings of
the First Sanskrit Computational Linguistics Symposium, ed. Gérard Huet and
Amba Kulkarni, 2007.

[8] Monier Williams, M.: A Sanskrit-English Dictionary, Clarendon, Oxford, 1872
[Reprint: Motilal Banarasidass, Delhi, 1997].

[9] Roy, P. V. and Haridi, S.,: Concepts, Techniques and Models of Computer Pro-
gramming, MIT Press, Cambridge, 2004.

[10] Scharf, P. M.: ”Modeling Paninian Grammar”, Proceedings of the First Inter-
national Sanskrit Computational Linguistics Symposium, ed. Gérard Huet and
Amba Kulkarni, 77-94, 2007 .

[11] Subrahmanyam, P. S.: Pān. inian Linguistics, Institute for the Study of Languages
and Cultures of Asia and Africa, Tokyo University of Foreign Studies, Japan,
1999.

[12] Vasu, S. C.: Siddhānta Kaumudi, Motilal Banarasidas Publishers, New Delhi,
2002.

[13] Vasu, S. C.: The As.t.ādhyāȳı of Pān. ini, Motilal Banarasidas Publishers, New
Delhi, 2003.

Appendix

We illustrate the formation of rāmān. ām, the plural, masculine form in genitive
case of the root word rāma.

1. The input to the program is: Form: rāma: bahuvacana, s.as.t.h̄ı, puṁliṅga.
2. arthavad adhātur apratyayah. prātipadikam 1.2.45

rAma gets the sam. jñā prātipadika after being checked in the database,
and we have the form: rāma (prātipadika, bahuvacana, s.as. t.h̄ı, puṁliṅga,
akārānta, root(rāma)).

3. su au jas am aut śas t.ā bhyām bhis ṅe bhyām bhyas ṅasi bhyām bhyas ṅas
os ām ṅyos sup 4.1.2
pratyayah. 3.1.1
paraśca 3.1.2
We can see the importance of obtaining the attribute prātipadika to the
nominal stem rāma. This encourages us to make a data structure that keeps
on adding the attributes to a word for further usage in the rules of the
As.t.ādhyāyī.
The application of this rule needs us to be familiar with the devices of
anuvr. tti and adhikāra adopted by Pān. ini. The device of anuvr.tti aims at
avoiding repetition of the same item. The device of adhikāra is used to indi-
cate homogeneity of topic. The adhikāras stand for a subjectwise division of
contents of the As.t.ādhyāȳı. The adhikāra pratyayah. 3.1.1 governs the rules in
adhyāyas 3-5 and tells us that the items prescribed by these rules are called
pratyaya. Further, the rule paraśca 3.1.2 -‘That which is called a pratyaya
is placed after the crude form’, has its anuvr.tti till the end of chapter five.
Thus, both these rules are applicable in the current rule and thus these af-
fixes get the attribute of pratyaya and are applied after rāma.
Form: (rāma(prātipadika, bahuvacana, s.as.t.h̄ı, puṁliṅga, akārānta, root(rāma))
+ sup(pratyaya).

4. tāni ekavacanadvivacanabahuvacanāny ekaśah. 1.4.102
supah. 1.4.103
The array of 21 affixes will be transformed to a 7x3 array with the columns
getting the attributes ekavacana, dvivacana, and bahuvacana. Each triad is
called vibhakti. By matching vibhakti and vacana, we get the form:
rāma(prātipadika, bahuvacana, s.as. t.h̄ı, puṁliṅga, akārānta, root(rāma)) +
ām(sup, upadeśa, pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, root(ām)).

5. yasmāt pratyayavidhis tadādi pratyaye’ṅgam 1.4.13
suptiṅantam padam 1.4.14
After the application of these two rules, the structure is:
(rāma(prātipadika, bahuvacana, s.as.t.h̄ı, puṁliṅga, akārānta, aṅga, root(rāma))
+ ām(sup, upadeśa, pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, root(ām))) (pada).

6. yaci bham: bha sam. jñā is given to rāma. Form: (rāma(prātipadika, bahuva-
cana, s.as. t.h̄ı, puṁliṅgaakārānta, aṅga, bha, root(rāma)) + ām(sup, upadeśa,
pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, root(ām))) (pada).

7. The above data structure is a nimitta of the following sūtras:
ād gun. ah. 6.1.87
akah. savarn. e d̄ırghah. 6.1.101
hrasvanadyāpah. nut. 7.1.54
We run the conflict resolution module and the rule 7.1.54 is the winner rule.
We have the insertion of nut. to the pratyaya ām. Thus, by the rule ādyantau

t.akitau, we have the following form (after passing through the it module:
(rāma(prātipadika, bahuvacana, s.as.t.h̄ı, puṁliṅga, akārānta, aṅga, bha, root(rāma))
+ nām(sup, upadeśa, pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, āgama(nut.),
t.-it, u-it, root(nām))) (pada)

8. The above data structure is a nimitta of the following sūtras:
nāmi 6.4.3
supi ca 7.3.102
After running the conflict resolution module, we get 6.4.3 as the winner rule.
Thus, we have the form (after lengthening of the final a of rāma):
(rāmā(prātipadika, bahuvacana, s.as.t.h̄ı, puṁliṅga, akārānta, aṅga, bha root(rāma))
+ nām(sup, upadeśa, pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, āgama(nut.), t.-
it, u-it root(nām))) (pada)

9. No other rule from the sapāda saptādhyāȳı is applicable and the structure
moves to the tripādī after getting the attribute of avasāna.
virāmah. avasānam 1.4.110
(rāmā(prātipadika, bahuvacana, s.as.t.h̄ı, puṁliṅga, akārānta, aṅga, bha root(rāma))
+ nām(sup, upadeśa, pratyaya, vibhakti, bahuvacana, s.as.t.h̄ı, āgama(nut.), t.-
it, u-it root(nām))) (pada, avasāna)

10. at.kupvāṅnumvyavāye’pi 8.4.2
The rule changes the n of rāma + nām to n. and the structure is:
rāmān. ām (pada, avasāna) (rāmā(prātipadika, bahuvacana, s.as. t.h̄ı, puṁliṅga,
akārānta, aṅga, bha root(rāma)) + nām(sup, upadeśa, pratyaya, vibhakti,
bahuvacana, s.as.t.h̄ı, āgama(nut.), t.-it, u-it root(nām)))

