
Satyam Technology Review 57

Abstract
Most research in Machine translation is about
having the computers completely bear the load
of translating one human language into another.
This paper looks at the machine translation
problem afresh and observes that there is a need
to share the load between man and machine,
distinguish ‘reliable’ knowledge from the
‘heuristics’, provide a spectrum of outputs to serve
different strata of people, and finally make use of
existing resources instead of reinventing the wheel.

This paper describes the architecture and
design of ‘Anusaaraka’ based on the fundamental
premise of sharing the load, resulting in “good
enough” results according to the needs of the
reader. The architecture differs from the
conventional in three major ways:

◆ Reversal in the order of operations as
compared to conventional machine
translation systems

◆ Introduction of interfaces that act like glue
and improve the modularity of the system

◆ Development of a GUI to provide the ‘right ‘
amount of information at the right time

The paper attempts to prove that this new
architecture is a better approach to Machine
Translation, since a) it makes the machine
translation process transparent to the user-cum-
developer; and b) it leads to machine translation
in stages, thus ensuring robustness.

Keywords: Machine Translation, Word Sense
Disambiguation, Anusaaraka, Padasutra,
Polysemous

Introduction
Much of the information that is available widely
on the World Wide Web and through other media
is predominantly in the English language. As a
result, regional language users across the world
who need this information are unable to use it
because of a language constraint. However, the
advent of machine translation has proved
beneficial, in doing away with these language
barriers and helping regional language users to
access required data in the language of their
choice.

The question still asked is “to what extent can
machine translation help in overcoming the
language barrier?” The history of machine
translation is as old as the history of computers.
However, even after 50 years, except a few, there
is no evidence of systems that can provide good
translation.

The Anusaaraka architecture has been
designed and developed based on issues revealed
during an evaluation of conventional machine
translation and the apparent shortfall arising out
of a lack of fallback mechanism. The issues
revealed:

◆ A need to share the load between man and
machine

◆ Distinguish ‘reliable’ knowledge from the
‘heuristics’

Design and Architecture of ‘Anusaaraka’-
An Approach to Machine Translation

By Amba P. Kulkarni

57_64_Anu.p65 27/09/2003, 6:17 PM57

Administrator
Satyam



Volume 1, Q4, April, 200358

◆ Provide a spectrum of outputs to serve

different strata of people

◆ Make use of existing resources instead of

reinventing the wheel

The evaluation study further revealed an

imperative need for the total restructuring of the

conventional machine translation systems. This

would in case of failures, provide a safety net to

the users and let the the machine translation

system degrade.

The sections ahead highlight the major

difficulties faced in machine translation,

observations that lead to the new architecture for

a machine translation, the detailed architecture

of core anusaaraka, the need for interfaces to

facilitate plugging in of different linguistic tools

(in particular-parsers) the user interface and finally

converging to conclude by supporting the research

claim.

Problems in Machine Translation
The following points highlight the difficulties in

machine translation.

Languages code information partially

Languages do not completely code information.

The text is open to different interpretations, based

on who is reading it. In that manner, text in any

language is like a painting. The viewers interpret

the painting in their own way. In the process of

interpretation, they bring in their unique

combination of common sense, world knowledge,

language conventions, cultural background,

domain specific knowledge, and current state of

mind.

There is a trade-off between precision and

brevity. Brevity introduces ambiguity, whereas

precision needs to loss of focus. Natural languages

have a natural tendency to lean towards brevity.

Hence, they have inherent ambiguity.

Information is coded at arbitrarily long place

To resolve text ambiguity, it is not clear how much
of text is to be processed. Sometimes text as much
as a complete novel may have to be processed.

Differences across languages
◆ Differences in coding strategies: Two

languages may code the same information
in different ways.

E.g. Consider the English sentence, ‘Rats kill
cats.’

(1) Its Hindi translation is ‘cUhe billiyoM ko
mArate hEM’

(2) In English ‘vibhakti’ information is coded
in position. Hindi on the other hand
requires an explicit ‘vibhakti’ marker (ko).

◆ Differences in Concept-Word mappings:
Concepts are infinite, whereas words in any
language are innumerable. The way
conceptual space is divided into small regions
differs from language to language, i.e. each
region corresponding to a word in one
language may differ in another language. This
implies there need not be one-to-one
correspondence between the meanings of
words of one language to those of the other.

All these factors lead to ‘incommensurability’
between two languages.

Subjectivity in translation
Translation involves understanding the original
text and presenting it in other language. The
presentation part involves creativity. More than
one translations of the text may be undertaken to
cater to the needs and likes of different people.
Thus, for a given text there is no ‘one specific way’
of translation. What exists is a spectrum of
translations and it is the translator who translates’
what they feel is most appropriate.

All these issues make the task of machine
translation difficult.

57_64_Anu.p65 27/09/2003, 6:17 PM58

Administrator
Satyam



Satyam Technology Review 59

A fresh look at the problem

Machine Translation is difficult. Ideal machine
translation is still a dream, requiring many stages,
huge computing power and innovations.

Ultimately, the machine translation output is
to be read by humans, and interpreted in their
way. So why not involve the human earlier into
the machine translation process? Machines are
equipped with large memory storage, they can
“remember” large quantities of information.
Humans are good at interpretation. So the natural
suggestion is to share the load between man and
machine.

The question is how to share the load between
man and machine?

Some of the components like morphological
analyzers, dictionaries in principle can produce
"accurate" information, whereas some other
components like POS taggers, parsers in principle
are prone to errors, because they do not have
access to the world knowledge.

The question is how to split the system into
different modules so that user knows which part
of the output is reliable and which is not?

During the course of translation there exists
a tension between faithfulness to the original text
and naturalness in the target language making
accurate translation a difficult task. Machine
translation systems favor naturalness over the

faithfulness. These systems, therefore, serve only
a certain strata of people. But, there are others
who would like to have an access to the “original”
text (quality of faithfulness) without any
“distortions” as introduced by the translation
process.

The question is, can the diverse needs of these
different strata of people be addressed?

Finally, a machine translation system requires
many linguistic resources. Most of them are
available for English for free download on the
Internet under General Public License (GPL)[7]
for. It is natural to make use of these resources
rather than reinventing the wheel. In fact there
are more than one parsers, POS taggers and
morphological analyzers for English available
under GPL.

How should the system be designed so that one
can plug-in different language tools such as POS
taggers, parsers, morphological analyzers, etc.?

The Anusaaraka system attempts to answer these
questions.

Architecture of the Anusaaraka
system
The Anusaaraka system has two major
components.

◆ Core engine

◆ User–cum-developer interface

‘Core’ engine is the main engine of
anusaaraka. This engine produces the output in
different layers making the process of Machine
Translation transparent to the user.

The architecture of “core” anusaaraka is
shown in Figure 1.

This architecture differs from the conventional
architecture in three major ways

1. The order of operations is reversed. In the
new architecture there is initial word level
substitution followed by use of other language
resources that are less reliable, like POS
taggers, parsers, etc.

Figure 1 –The architecture of “core” anusaaraka

57_64_Anu.p65 27/09/2003, 6:17 PM59

Administrator
Satyam



Volume 1, Q4, April, 200360

2. A graphical user interface has been developed
to display the spectrum of outputs. The user
has flexibility to adjust the output as per his/
her needs. There will be users of different
kinds based on the level of sophistication
required and skill in handling the tool.

3. Special “interfaces”, which act as ‘glue’ have
been developed for different parsers, which
allow plugging in of different parsers thereby
providing modularity.

Core Anusaaraka engine
The core anusaaraka engine has four major
modules viz.

I. Word Level Substitution

II. Word Sense Disambiguation

III. Preposition placement

IV. Hindi Word Order generation

Each of the above four modules is described in
detail. A justification of how these changes
answer the questions raised in section 3 is
presented.

Word Level Substitution

At this level the ‘gloss’ of each source language
word into the target language is provided.
However, the Polysemous words (words having
more than one related meaning) create problems.
When there is no one-one mapping, it is not
practical to list all the meanings. On the other
hand, anusaaraka claims ‘faithfulness’ to the
original text. Then how is the faithfulness
guaranteed at word level substitution?

Concept of Padasutra

To arrive at the solution, the user must understand
why a native speaker does not find it odd to have
so many ‘seemingly’ different meanings of a word.
By looking at the various usages of any
Polysemous word, users may observe that these
Polysemous words have a “core meaning” and
other meanings are natural extensions of this

meaning. In anusaaraka an attempt is made to
relate all these meanings and show their
relationship by means of a formula. This formula
is termed Padasutra[2]. (The concept of Padasutra
is based on the concept of ‘pravrutti-nimitta’ from
traditional grammar) The word padasutra itself has
two meanings:

◆ a thread connecting different senses

◆ a formula for pada

An example of Padasutra:

The English word ‘leave’ as a noun means ‘Cutti’
in Hindi, and as a verb its Hindi meaning is
‘CodanA’ and it is obvious that ‘CodanA’ is derived
from ‘Cutti’. Hence, the Padasutra for ‘leave’ is

leave: Cutti[>CodanA]

Here ‘a>b’ stands for ‘b gets derived from a’
and ‘a[b]’ roughly stands for ‘a or b’.

Thus, by division of workload and adoption
of the concept of ‘Padasutra—word formula’, the
research guarantees that the first level output is
‘faithful’ to the original and also acts as a ‘safety
net’ where other modules fail.

At this level some of the English words like
functional words, articles, etc. are not substituted.
The reason being they are either highly
ambiguous, or there is a lexical/conceptual gap
in Hindi corresponding to the English words (e.g.
articles), or substituting them may lead to
catastrophe.

Thus, for the input sentence ‘rats killed cats’
the output after word level substitution is

cUhA{s} mArA{ed/en} billI{s}

Training Component

To understand the output produced in this manner,
a human being needs some training. The training
presents English grammar through the Paaninian
view[3].

Thus, if a user is willing to put in some effort,
he/ she has complete access to the original text.

57_64_Anu.p65 27/09/2003, 6:17 PM60

Administrator
Satyam



Satyam Technology Review 61

The effort required here is that of making correct
choices based on the common sense, world
knowledge, etc.

The training component layer ensures that the
layer produces an output, which is a “rough”
translation that systematically differs from Hindi.
Since the output is generated following certain
principles, the chances of getting mislead are less.
Theoretically, the output at this layer is reversible.

Word Sense Disambiguation (WSD)

English has a very rich source of systematic
ambiguity. Majority of nouns in English can
potentially be used as verbs. Therefore, the WSD
task in case of English can be split into two classes:

(i) WSD across POS

(ii) WSD within POS

The POS taggers can help in WSD when the
ambiguity is across POSs.

For example: Consider the two sentences

‘He chairs the session’.

‘The chairs in this room are comfortable’.

The POS taggers mark the words with appropriate
POS tags. These taggers use certain heuristic rules,
and hence may sometimes go wrong. The reported
performances of these POS taggers vary between
95% to 97%. However, they are still useful, since
they reduce the search space for meanings
substantially.

However, disambiguation in the case of
Polysemous words requires disambiguation rules.
It is not an easy task to frame such rules.

It is the context, which plays a crucial role in
disambiguation. The context may be

◆ the words in proximity, or

◆ other words in the sentence that are related
to the word to be disambiguated.

The question is how can such rules be made
efficiently? To frame disambiguation rules

manually would require thousands of man-years.
Is it possible to use machines to automate this
process?

The wasp workbench [8] is the best example
of how, with the help of a small seed data,
machines can learn from the corpus and produce
disambiguation rules.

Anusaaraka uses the wasp workbench to
semi-automatically generate these disambiguation
rules. The output produced at this stage is
irreversible, since machine makes choices based
on heuristics.

Preposition Placement

English has prepositions whereas Hindi has
postpositions.

◆ Hence, it is necessary to move the
prepositions to proper positions in Hindi
before substituting their meanings. While
moving the prepositions from their English
positions to the proper Hindi positions,
\record of their movements must be stored,
so that in case a need arises, they can be
reverted back to their original position.
Therefore, the transformations performed by
this module, are also reversible.

Hindi Word Order Generation

Hindi is a free word order language. Therefore,
even the anusaaraka output in the previous layer
makes sense to the Hindi reader. However, this
output not being natural in Hindi, may not be
enjoyed as much as the output with natural Hindi
order. Additionally, it would not be treated as a
translation. Therefore, in this module the attempt
is to generate the correct Hindi word order.

Interface for different linguistic tools

The second major contribution of this architecture
is the concept of ‘interfaces’. Machine translation
requires language resources such as POS taggers,
morphological analyzers, and parsers. More than

57_64_Anu.p65 27/09/2003, 6:17 PM61

Administrator
Satyam



Volume 1, Q4, April, 200362

one kinds of each of these tools exist. Hence, it is
wise to use these tools. However, there are
problems.

For examples – Parsers

I. These parsers do not have satisfactory
performance. 40% of the time, the first parse
is the correct parse. Parse of a sentence tells
how the words are related to each other. 90%
of such relations in any parse are typically
correct.

II. Each of these parsers is based on different
grammatical formalism. Hence, the output
they produce is also influenced by the
theoretical considerations of this grammar
formalism.

III. Since the output format for different parsers
is different, it is not possible to remove one
parser and plug in the other one.

IV. One needs trained manpower to interpret the
output produced by these parsers and to
improve the performance of these parsers.

As a machine translation system developer who
is interested in the “usable” product one would
like to plug-in different parsers and watch the
performance. May be one would like to use
combinations of them, or may like to vote among
different parsers and choose the best parse out
of them.

The question then is how to achieve it?

It is not enough to have the modular programs.
The parser itself is an independent module. What

is required is plug-in facility for different parsers.

This is possible, provided all the parsers produce

an output in some common format. Hence,

interfaces are necessary to map output of parsers

to an intermediate form as illustrated in figure 2.

Anusaaraka output and the user
interface
The Java based user interface has been developed

to display the outputs produced by different layers

of anusaaraka engine. The user interface provides

a flexibility to control the display.

A snapshot of a sample English-Hindi anusaaraka

output with brief explanation of each of the layers

is provided :

Layer1

◆ Row 1: Original English sentence

◆ Row 2: Word level substitution

❑ Least fragile layer.

❑ Contains Hindi Padasutra (word formula)

for each English word.

For example small -> CotA^alpa

rats -> cUhA{s}

◆ Row 3: Word Grouping

❑ The group of words which as a group

give some new meaning (e.g. compounding)

are grouped together.

In the above sentence,

are + ing = 0_rahA_hE

Figure 2 –Interfaces that map output of parsers to an intermediate form

57_64_Anu.p65 27/09/2003, 6:18 PM62

Administrator
Satyam



Satyam Technology Review 63

◆ Row 4: Word Sense Disambiguation

❑ Attempts to select the appropriate sense
according to the context.
For example, the big cats -> vyaaghraadii

◆ Row 5: Preposition Movement

❑ The prepositions are moved to their
correct Hindi positions.
E.g. ‘->meM — jangala’ is changed to
‘— — jangala+meM’.

Layer 2: Hindi anuvAda

Proper Hindi sentence is
generated
Anusaaraka: A better approach for
Machine Translation

The research conducted thus far claims that
anusaaraka is a better approach for Machine
Translation[3] because it is

Robust

It always produces the output. If the machine fails
at higher levels, which are in principle fragile,
lower level outputs are still available to the user.
However to understand the lower level outputs,
some training is required.

Transparent

The output at different levels makes the whole
process of machine Translation transparent to the
user. This opens up a new opportunity for the
persons having an aptitude for language analysis
to contribute the Machine Translation efforts even
without any formal training in computational
linguistics, or NLP.

Future Work
The framework for anusaaraka with initial data
set (appendix-1) for English-Hindi pair is almost
ready for user-cum-developers.

The initial data, is deemed sufficient to start
a “boot-strapping” process. However, the data
needs to be enhanced qualitatively and
quantitatively several times for general use.

What is required is

◆ Continuous feedback from the user-cum-
developers, and

◆ Enrichment and enlargement of the data

This opens up an opportunity for the language
lovers to participate in the development of
machine translation systems, thereby also making
them participants in the IT revolution rather than
mere IT consumers.

Acknowledgment
The major contribution in the conceptualization
of the design and architecture of this system taking
insights from Paninian Grammar is by Dr. Vineet
Chaitanya. The author has given a concrete shape
to these concepts and ideas by actual
implementation. Dr. Dipti Misra has given the
linguistic inputs and the user interface has been
developed by Ms. Surekha and Mr. Srinivas
Raghavan. Apart from these, there are many other
volunteers who have contributed to this project.

References
[1] Akshar Bharati, Vineet Chaitanya, Rajeev

Sangal, ”Natural Language Processing”, Prentice

Hall of India, 1995.

Figure 3 – Snapshot of a sample Engilsh-Hindi Anusaaraka output

<-- Original English
<-- Word Level Substitution
<-- Word Grouping
<-- Word Sense Disambiguation
<-- Preposition Movement

<-- Hindi anuvAda

57_64_Anu.p65 27/09/2003, 6:18 PM63

Administrator
Satyam



Volume 1, Q4, April, 200364

[2] Akshar Bharati, Vineet Chaitanya, Dipti Misra,

Amba Kulkarni. Modern Technologies for

language Access: An aid to read English in the

Indian Context: Osmania Papers in Linguistics,

Ed. V. Swarajya Lakshmi, pp.111-126.

[3] anusaaraka

URL = <http://nlp.iiit.net/ ~anusaaraka>

[4] Bharati, Akshar, Rajeev Sangal, Dipti M Sharma,

Amba P Kulkarni: Machine translation activities

in India: A survey, In proceedings of workshop

on survey on Research and Development of

Machine translation in Asian Countries,

Thailand, May 13-14, 2002.

[5] GNU General Public Licence:

URL=<http://www.gnu.org/copyleft/gpl.txt>

[6] Kilgarriff Adam, Tugwell David: WASP-Bench

an machine translation Lexicographer’s

Workstation Supporting State-of-the-art Lexical

Disambiguation, To be presented at machine

translation Summit VII, Santiagode Compostela,

September 2001.

Appendix-I
The current English-Hindi anusaaraka has

◆ An English-Hindi bilingual dictionary
with approximately 28,000 headwords,
compounds, phrases and idioms.

◆ A dictionary of Padasutras for around 2000
English words, with an explanation on the
connections between different senses for
around 400 of them.

Word sense disambiguation rules for around 1000
words. Majority of these rules are generated ‘semi-
automatically’ using the WASP[6] workbench.

57_64_Anu.p65 27/09/2003, 6:18 PM64

Administrator
Satyam


