
Computational Structure of the As.t.ādhyāȳı and

Conflict Resolution Techniques

Sridhar Subbanna1 and Varakhedi Shrinivasa2

1 Rashtriya Sanskrit Vidyapeetha, Tirupati, India,
sridharsy@gmail.com,

2 Samskrita Academy, Osmania University, Hyderabad, India,
shrivara@gmail.com,

Abstract. Pān. ini ’s As.t.ādhyāȳı consists of sūtras that capture funda-
mentals of Sanskrit language and define its structure in terms of phonol-
ogy, morphology and syntax. The As.t.ādhyāȳı can be thought of as an
automaton to generate words and sentences. In object oriented program-
ming terms, prescribing sūtras are objects having its transformation rule
as its method. The meta rules or paribhās.ā sūtras and paribhās.ā vārtikās
define the flow of the program. During application of sūtras, conflicts may
arise among two or more competing sūtras. In this paper, computational
structure of the As.t.ādhyāȳı, sūtra objects observing the environment,
tree representation of sūtras and mathematical representation of conflict
resolution techniques are presented.

1 keywords

Pān. ini, As.t.ādhyāȳı, Sanskrit, Vyākaran.a, Sūtra, Computer Modelling, Conflict
Resolution, Object Oriented Programming, Mathematical Representation

2 Introduction

The As.t.ādhyāȳı[1] (śabdānuśāsanam) deals with the generation of words and
sentences of Sanskrit Language and also provides a base for the analysis of the
same in general. Its algebraic nature and comprehensiveness illustrate that its
structure can be described as a machine generating words and sentences of San-
skrit.
The As.t.ādhyāȳı[9] consists of around 4000 sūtras that describe the fundamen-
tals of Sanskrit language in terms of phonology, morphology and syntax. The
structure consists of definitions, rules, and meta-rules that are context-sensitive
and operate in sequence or recursively[6].

Generally these rules are classified into three groups:

1. Rules of definition and meta-rules (sam. jña and paribhāshā)
2. Rules of affixation of roots (dhātu and prātipadika) and

3. Rules of transformation for stems and the suffixes.

The computer programs have exactly the same features of context-sensitive
rules, recursion and sequential rule application[7]. Prescribing sūtras are context-
sensitive rules, paribhās.ās define the flow and hence the as. t.ādhyāȳı can be
thought of as an automaton that generates Sanskrit words and sentences.

3 Computational Structure of the As.t.ādhyāȳı

The As.t.ādhyāȳı consists of sūtras that are organized in a systematic and math-
ematical manner. The application of sūtras follows a systematic procedure in
deriving the final form of words from roots and affixes. In object oriented pro-
gramming[8], objects have state and behaviour as two characteristics. State is
the data part and behaviour is the method or function. Here, sūtra as an object
will be observing the state of environment and applies as its transformation rule
if the condition satisfies. Thus, object oriented programming suits best to model
the as.t.ādhyāȳı.

3.1 Classification and Representation of sūtras

Traditionally the sūtras in the As.t.ādhyāȳı are classified into 6 groups.3

1. sam. jñā sūtras : assign sam. jña-s or labels.
2. paribhās. ā sūtras : meta-rules for interpretion and application of sūtras.
3. vidhi sūtras : prescribing rules for ādeśa(substitution/deletion) and āgama(insertion).
4. niyama sūtras : conditioning rules that confines vidhi sūtra with some addi-

tional conditions.
5. atideśa sūtras : extension rules to extend the existing rules in another sce-

nario.
6. adhikāra sūtras : governing rules adopted for division of contents and gives

meaning to the successive sūtras.

For our convenience these sūtras can be grouped as follows.

1. Meta rules or helping rules (2 & 6 above)
2. Prescribing rules (1,3,4 & 5 above)

paribhās. ā and adhikāra sūtras are meta rules. Paribhās. ā sūtras are utilized to
intrepret the sūtras and adhikāra sūtras are meant to define the boundary of a
particular topic domain. Rest are prescribing rules that define transformation
functions. The meta rules help in interpretation[4] and application of rules. This
will be discussed in detail in the conflict resolution section.
The prescribing rules can be grouped under each nested topic (ekavākya). Each
nested group can be represented as a tree of sūtra objects. utsarga or general

3 sam. jñā ca paribhās. ā ca vidhir niyama eva ca

atideśodhikāraśca s.ad. vidham sūtralaks.an. am

sūtra will be root node and apavāda (exception) sūtras will be the child nodes.
The sūtras that are having different conditions under the same topic will be the
sister nodes. During the application of sūtras a single tree traversal algorithm
can be used to determine the sūtra that is to be applied. It has to be seen
whether this process of tree building can be automated.
The following examples will explain the nature of representation.

Example 1: The Figure 1 shows representation of mutually exclusive guru and
laghu sam. jñas.

1. hrashvam laghu 1.4.10

2. sam. yoge guru 1.4.11

3. dh̄ırgham. ca 1.4.12

Fig. 1. Tree representation for guru and laghu sam. jña rules

Example 2: At various different places the it sam. jña is used. The Figure 2
shows its definition.

1. upadeśe ajanunāsika it 1.3.2

2. halantyam 1.3.3

3. na vibhaktau tusmāh. 1.3.4

4. ādih. ñit.udavah. 1.3.5

5. s.ah. pratyayasya 1.3.6

6. cutū 1.3.7

7. laśakvataddhite 1.3.8

Fig. 2. Tree representation for it sam. jña rules

Example 3: The Figure 3 shows the representation of the sandhi sūtras. The
sūtra 2, 3, 4 & 6 are sister nodes as their conditions for applying or domain are
different. The sūtra 12 is apavāda to both sūtra 2 and sūtra 6. There may be
many such cases in whole of the as. t.ādhyāȳı.

1. sam. hitāyām. 6.1.72
2. iko yan. aci 6.1.77
3. ecoyavāyāvah. 6.1.78
4. vānto yi pratyaye 6.1.79
5. dhātostannimittasaiva 6.1.80
6. ādgunah. 6.1.87
7. vr.ddhireci 6.1.88
8. etyedhatyūt.hsu 6.1.89
9. eṅi pararūpam. 6.1.94

10. omāngośca 6.1.95
11. ato gune 6.1.97
12. akah. savarn. e d̄ırghah. 6.1.101
13. prathamayoh. pūrvasavarn. ah. 6.1.102.

Fig. 3. Tree representation for ac sandhi rules

3.2 Computational structure

The root nodes will be observing the environment (subject). All the nodes that
find the condition send a request for their application. After getting requests,
conflict resolver adopts the resolution techiques and selects only one node among
them for application. Then the tree with that as root node will be traversed to
find the exact sūtra for application. The sūtra object contains all the information
about the sūtra. The sūtra will be applied to update the environment. The
Figure 4 represents the overall structure of the as.t.ādhyāȳı.
The output states and other sūtras are siddha (visible) to all the sūtras of the
as.t.ādhyāȳı except where it is explicitly mentioned as asiddha (invisible). There
are three places where the asiddhatva is explicitly mentioned.

Siddha

Asiddhavat

Asiddha

A

A

B

Root Level Nodes observing the Environment

A, B Environment

C Output

C

Input

Fig. 4. Computational Structure of the As.t.ādhyāȳı

1. Asiddhavadatrābhāt 6.4.22
2. S. atvatukorasiddhah. 6.1.86
3. Pūrvatrāsiddham 8.2.1

In general, whenever conditions for a sūtra are satisfied, that sūtra will be ap-
plied. Only one sūtra will be applied at a time. In other words no two sūtras
can be applied simultaneously. However, the sūtras of asidhavat prakaran.a that
are all having the same condition, can be thought of as applied simultaneously.
The sūtras in the last three pādas, that is, tripād̄ı need to be applied in the
sequential order. The Figure 4 explains this model.

In Figure 4, the siddha block contains the sūtras of sapādasaptādhyāȳı mi-
nus the asiddhavat prakaran.a sūtras (6.4.22 to 6.4.175). The asiddhavat block
contains the sūtras of asiddhavat prakaran.a. The asiddha block contains the
tripādi sūtras. The ovals A and B represent the output states and the C rep-
resents the output of the system (final state). The small circles represent sūtra
group that takes the input state and changes the state. There will be a state
transition function defined for each sūtra object. While in a particular state,
if the conditions for root sūtra are satisfied, then complete tree with this as a
root node is traversed in order to find out which sūtra within this tree is to be
applied, accordingly it transforms the state by invoking the function defined for
that sūtra. In the siddha block, all the states are visible and can be input state
to any sūtra in the same block.

While in the siddha blok, if conditions of any of the sūtras in the asiddhavat
block are met, initially, state B is same as state A. The sūtras here in the
asiddhavat block take both A and B as input, and transforms only B. So, all
other sūtras check for their condition in state A and operates on B. When there
are no more conditions for the sūtras in this block, the state A is made same as
state B.

When there are no more conditions for sūtras in the siddha block or in the
asiddhavat block then the state is sequentially updated by the sūtras in asiddha
block that are applicable in that particular state and the final output state will
be C.

There is a need to develop techniques that make the explanation of the com-
putational structure of the as.t.ādhyāȳı easier. The techniques of representing and
manipulating knowledge should be developed and create computing algorithms
that have computational abilities.

Example 1. When the state A is vana + t.ā(case 3,num 1)], the sūtra t.ā ṅasiṅasām
inātsyāh. (7.1.12) in the siddha block finds its condition. After its invocation A
is changed to vana + ina. Then the sūtra ād gunah. (6.1.87) in the siddha block
finds its condition and gets invoked. A now becomes vanena. No other sūtra
finds the condition, hence A is passed to C. Now C has the final form vanena.

Example 2. When the state in A is śās + hi sūtras in the Asiddhavat block
find the condition. Initially, state B will be same as state A. Now the sūtra śā
hau (6.4.35) is invoked and then B is changed to śā + hi. The sūtra hujhalbhyo

herdhih. (6.4.101) also finds the condition in A and is invoked. B is now changed
to śā + dhi. No more sūtras finds the condition, so A is made same as B. None
of the sūtras either in siddha block or the asiddha block find the condition in A.
Hence A is passed to C without any tranformation giving the final word [́sādhi].

Example 3. When the state A is dvau + atra. The sūtra ecoyavāyāvah. (6.1.78)
finds the condition. This sutra is now applied, A is changed to dvāv + atra. No
sūtra in the siddha block or the asiddhavat block finds condition in A. The sūtra
lopah. śākalyasya (8.3.19) in the asiddha block finds the condition. After its in-
vocation it is changed to dvā + atra. This state is not visible to the sutras either
in the siddha block or in the asiddhavat block. Even though there is condition
for akah. savarn. e d̄ırghah. (6.1.101) in the siddha block, this state is not visible
to this sūtra. Hence this sūtra cannot be applied. The sūtras that are following
the sūtra lopah. śakalyasya(8.3.19) have visibility of this state but do not find
condition. Hence none of the sūtras are applied, yielding the final form as dvā
atra.

The asiddhatva is the base for the above shown computational structure of
the as.t.ādhyāȳı. This whole structure developed on the basis of Siddha-asiddha
principle resolves many conflicts in the whole application.

4 Techniques for Conflict Resolution

In general, it can be thought of, as all the sūtras will be observing the changes in
a given state (prakriyā) and wherever they find their condition (nimitta), they
would come forward to apply their function - kārya on that state, as a result the
state would get modified. However there are possibilities of conflict that arise
between many sūtras in this process, as many of them may find condition in a
particular state and all of them would try to apply. At any point of time only
one modification is possible in the given state. Sometimes all the sūtras may be
applied in a particular order or one is applied and others are rejected. Due to
this, complexity of the program will not only increase, but also results into a
paradoxical situation.

There are different paribhās.ā sūtras, paribhās.ā vārtikās to resolve these con-
flicts. Considering only the as. t.ādhyāȳı sūtras it may not be possible to resolve
conflicts under all circumstances, hence vārtikas also should be taken into ac-
count in conflict resolution. We are trying to represent conflict resolution tech-
niques mathematically, that can be directly adopted in a computer program.

4.1 Conflict resolution through sūtras

There are only few sūtras that directly prescribe the flow or resolve conflict.

4.1.1 Vipratis.edhe param. kāryam. 1.4.2 This sūtra says when there is con-
flict then para (the later one in a sequential order) sūtra is to be applied. Ac-
cording to Patanjali’s interpretation para means íst.a[2] and not the later one
in the sūtra order. There is another controversy among traditional and modern
Grammarians in interpretation of this sūtra. The traditional view is that this
sūtra is globally applicable across the as.t.ādhyāȳı. The modern thinking is that
this sūtra is locally applicable to the ekasam. jñā domain which runs through
2.2.38. This needs to be looked into greater detail to see the cases on which they
have taken their stands.

4.1.2 Siddha and Asiddha All the sūtras are treated as siddha (visible) to
each other unless specified explicitly as asiddha (invisible) in the sūtras.4

There are two view points on asiddha concept namely Śāstrāsiddha and Kāryāsiddha.
If a sūtra is Śāstrāsiddha, if sūtra itself is invisible to another sūtra, and it is
Kāryāsiddha if the sūtra is visible but its kārya (result) is asiddha to the other.
These two alternative ideas need to be examined.

Example śivacchāyā[10]

1. śivachāyā
2. śivatchāyā 6.1.73
3. śivadchāyā 8.2.39
4. śivajchāyā 8.4.40
5. śivacchāyā 8.4.55

The environment is śivachāyā. The sūtra che ca 6.1.73 is applied and is
changed to state 2. Now the sūtras jhalām. jaśonte 8.2.39 and stoh. ścunāścuh. 8.4.40
find the condition in this context. Since 8.4.40 is asiddha to 8.2.39, 8.2.39 is
applied first and state is updated to state 3. Again, 8.4.40 and khari ca 8.4.55 has
nimmita for application, similar to earlier one, here also since 8.4.55 is asiddha
to 8.4.40, 8.4.40 is applied first and state is update to state 4. Now, 8.4.55 gets
a chance for its application and environment is moved to state 5. The sūtra coh.
kuh. 8.2.30 cannot see the environment and does not come forward. This way
application of rule 8.2.30 is prevented after the final form.

4.2 Conflict resolution through vartikas

4.2.1 Para-nitya-antaraṅga-apavādānām uttarottaram. bal̄ıyah. [3] This
paribhās.ā gives us criterion for conflict resolution. The priority is apavāda, an-
taraṅga, nitya and para. We explain below how we model these priorities.

1. utsarga - apavāda
utsarga and apavāda (General and Exception) sūtras are static; this infor-
mation is embedded in the tree structure itself. During the application of

4 pūrvatra asiddham 8.2.1, asiddhavadatrābhāt 6.4.22, s.atvatukorasiddhah. 6.1.86

sūtras the tree is traversed in such a way to determine the apavāda sūtra.
When two sūtras have utsarga and apavāda relation then apavāda sūtra is
selected and applied, utsarga sūtra is rejected.

2. antaraṅga - bahiraṅga
The definition alpāpeks.am. antaraṅgam. and bahvapeks.am. bahiraṅgam. can be
used to determine the antaraṅgatva and bahiraṅgatva of the any two sūtras.
When the sūtras have antaraṅga and bahiraṅga relation then antaraṅga
sūtra is selected and applied, bahiraṅga sūtra is rejected. The antaraṅga
and bahiraṅga are relative to the context and can be mathematically deter-
mined. The definition could be formalized as follows.
Let f(X, φ) return the number of conditions that are required for sūtra X
to apply in the given state φ.

if f(X, φ) is less than f(Y, φ)
then X is Antaraṅga and Y is Bahiraṅga

else Y is Antaraṅga and X is Bahiraṅga

endif

Example, Let X = sarvād̄ıni sarvanāmāni 1.1.27 and Y=prathamacharama
tayalpakatipayanemāśca 1.1.33. When the state is ubhaya jas. Whether ubaya
gets sarvanāmasam. jñā by X or optionally by Y is the question.
f(X, φ) = 1 as there is only one condition for X to apply. The condition is
ubhaya’s existance in sarvādi gana.
f(Y, φ) = 2 as there are two conditions for Y to apply. One condition is
ubhaya is a tayappratyayānta and second condition is jas pratyaya in front
of it.
Since, f(X, φ) < f(Y, φ), X is antaran. ga and Y is bahiran. ga. Since antaran. ga
is preferred, here ubhaya will get the sarvanāmasam. jñā by X, but not op-
tional sarvanāmasam. jñā by Y.

3. Nitya - Anitya
The definition of nitya and anitya is given as kr. tākr. taprasaṅgi nityam tad-
vipar̄ıtamanityam. The nitya and anitya are relative to the context and can
be mathematically defined.
Let there be sūtras X and Y that have the condition for its application in a
particular state. If X is applicable irrespective of the application of Y then X
is said to be nitya. On application of Y if X loses its condition for application
then it is said to be anitya. It can be defined mathematically as follows.
Let f(X, φ) returns φ′ ,transformed state after application of sūtra X in the
φ state and returns zero if sūtra X is not applicable in the φ state.

if f(X, f(Y, φ)) is not zero
X is nitya and Y is anitya

else

if f(Y, f(X, φ)) is not zero
X is anitya and Y is nitya

else X and Y do not have the nitya anitya relation.

Comsider the case when the state is tud ti then the sūtras tudādibhyah.
śah̄(3.1.77) and pugantalaghūpadasya ca (7.3.86) both find their condition.
Let X = tudādibyah. śah. (3.1.77) and Y = pugantalaghūpadasya ca(7.3.86).
Then f(X, φ) =tud sha ti and f(Y, f(X, φ)) = 0 because Y is not applica-
ble in the state tud sha ti. So Y is anitya. Consider, f(Y, φ) = tod ti and
f(X, f(Y, φ)) =tod sha ti i.e, is not equal to zero. Hence X is nitya.

4. Para - Apara
Para and Apara (Posterior and Prior): The sūtra that is positioned before
in the as.t.ādhyāȳı order is apara and the one later is para. Between the para
and apara sūtras, para sūtra is selected and applied, apara sūtra is rejected.
The para-apara relation can be determined based on the sūtra saṅkhyā.
For example, bahuvacane Jhalyet 7.3.103 is para to supi ca 7.3.102 as 7.3.103
is later than 7.3.102. Let f(X) returns the sūtra number in the at.ādhyāȳı.

if f(X) > f(Y)
then X is para and Y is apara

else Y is para and X is apara

4.2.2 Varn. ādāṅgam. bal̄ıyo bhavati There are two rules one acting on aṅga5

and other on phoneme. In this case, the sūtra on aṅga should be applied first.

4.2.3 Laks.ye laks.an. am. sakr.deva pravartate This vartika prevents the
recursion. Only once any sūtra should be applied in a particular environment[5].
Here sūtra means group of sūtras under the same topic (ekavākya). In the tra-
dition, analogy of takrakaun. d. in. ya

6 is given to expain this concept.

5 Conclusion

The next objective is to implement this as a computer program and see whether
we can optimize the sūtras or evaluate the necessity of the vārtikas. Such an im-
plimentation would not only confirm the automata nature of Paninian System
but also exhibit the complexities of the system and feasibility of resolutions to
them by employing techniques shown by Pān. inian Tradition. Our current effort
could be a first step towards achieving that goal.

Acknowledgment Authors thank Lalit Kumar Tripati and Amba P Kulkarni
for useful discussions at various stages of the work.

5 yasmāt pratyayavidhih. tadādi pratyaye aṅgam - 1.4.13
6 Brāhman. ebhyo dadhi d̄ıyatam. , takram. kaun. d. in. yāya. Here there are two rules.

Brāhman. ebyo dadhi d̄ıyatām. is first one, takram. kaun. d. in. yāya is the second one.
Once takram. is given to kaun. d. in. ya, again dadhi will not be given according to first
rule.

References

[1] Swami Prahlada Giri and Satyanarayanashastri : Pan. in̄ıyah. As.t.ādhyāȳı Krish-
nadas Academy, Varanasi (1984)

[2] Bhargava Sastri Bhikaji Josi : The Vyākaran.amahābhās.ya of Patañjali,
Chaukhamba Sanskrit Pratishtan, Delhi(1872)

[3] F. Kielhorn : Paribhās.enduśekara of Nāgojibhat.t.a, Parimal Publications, Delhi.
[4] Srinarayana Mishra: Kāśikā, Chaukamba Samskrita Samsthan, Varanasi (1979)
[5] Abhyankar K.V. : Paribhāshāsamgraha, Bhandarkar Research Instt, Puna,

(1967).
[6] Paul Kiparsky : On the Architecture of Panini’s Grammar,the lectures delivered

at the Hyderabad Conference on the Architecture of Grammar, (2002).
[7] Saroja Bhate and Subash Kak : Panini’s Grammar and Computer Science, Annals

of the Bhandarkar Oriental Research Institute 79–94 (1993).
[8] Roy, P. V. and Haridi, S.,: Concepts, Techniques and Models of Computer Pro-

gramming, MIT Press, Cambridge (2004).
[9] Vasu, S. C.: The As.t.ādhyāȳı of Pān. ini, Motilal Banarasidas Publishers, New

Delhi, (2003).
[10] Vasu, S. C.: Siddhānta kaumudi, Motilal Banarasidas Publishers, New Delhi,

(2002).

