Sanskrit Analysis System (SAS)

Manji Bhadra', Surjit Kumar Singhz, Sachin Kumar®, Subash?, Muktanand
Agrawals, R.Chandrasekhar®, Sudhir K Mishra’, Girish Nath Jha®

1:2.3.58g pecial Centre for Sanskrit Studies
Jawaharlal Nehru University
New-Delhi
*C-DAC Kolkata, NLP Group
"Visiting Scholar, Department of Classics, Brown University
’C-DAC Pune, AAI Group
1Inanji.l;vh.aldr.al@ gmail.com, 2surjit.jnu@ gmail.com, 3sachinjnu @gmail.com, 8girishjha@ gmail.com,
“subhash.jnu @ gmail.com, *mukta.jnu @ gmail.com, ‘chandrashekhara@ gmail.com,

"sudhirkumarmishra@ gmail.com

Abstract The paper describes Sanskrit Analysis System (SAS) — a complete analysis system for
Sanskrit. Some modules of this system have already been developed. The system accepts full text
inputs in Devanagari Unicode (UTF-8). The sandhi module does the segmenting for complex
tokens and then hands over the text for detailed processing. Currently, the SAS modules have
independent interfaces for unit testing at http://sanskrit.jnu.ac.in . The authors are working on
the integration process of these modules. The SAS has two major components - the shallow
parser and the karaka analyzer. The shallow parser has separate modules, some of them are
partially implemented, and some of them are in the process of being implemented. The modules
have been developed as java servlet in unicode using RDMBS techniques. The applications of
the SAS will be many ranging from being a Sanskrit reading assistant to machine translation
system from Sanskrit to other languages.

Keywords: sandhi, subanta, tinanta, krdanta, samasa, taddhita, strT pratyaya, karaka,
vibhakti, pratipadika, dhatu, sup, tin, avyaya, sitra, varttika, akanksa, yogyata,
vivaksa, linga, upadha, gana, pada, lakara, vacana, vikara, upasarga, vrddhi

1 Introduction

Developing an NLP system which analyzes a natural language is a difficult task.
Sanskrit language has Panini’s grammar which is explicitly generative, while the task
in analysis systems is to apply rules for processing a generated string or utterance.
The authors in this process have tried to use Paninian rules in reverse with appropriate
lexical interfacing for analyzing Sanskrit. But in many cases, Paninian rules demand
deep semantic analysis, especially in the case of karaka rules. The SAS has two major
components - one is the shallow parser and the other is the karaka analyzer. Shallow

2 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawals5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

parser contains sandhi' analyzer, samdsa analyzer, subanta’ analyzer, gender
analyzer’, krdanta analyzer, taddhita analyzer, tinanta’ analyzer and the POS
tagger®. Among them the sandhi analyzer is partially implemented and samdsa and
taddhita analyzers are yet to be implemented. After getting the input, the system first
analyzes the sandhi and samasa by these modules wrapped into a separate system.
Then the system analyzes the nominal inflected words for separating base and
vibhakti and stores the PNG features of the tokens. Primary derived nouns are
analyzed by the krdanta analyzer and secondary derived nouns are supposed to be
analyzed by the taddhita analyzer. The tinanta analyzer analyzes verbs into affixes,
number and person. After morphological analysis of each word in the sentence, the
POS tagger assigns them appropriate POS category with the help of lexicon, corpus
and other Panini based formulations. The karaka’ analyzer takes over from here and
analyzes the syntactico-semantic relations at the sentence level. A brief modular
outline of the SAS is given below —

SAS

Shal arser Karaka analyzer*

\ —

sandhi* samasa** subanta gender krdanta taddhita** tinanta tagging

I Kumar Sachin,2007, *Sandhi Splitter and Analyzer for Sanskrit (with reference to ac
Sandhi)’, M.Phil dissertation, Special Center for Sanskrit Studies, INU

2 Chandra Subash, 2006, ‘Machine recognition and Morphological Analysis of Subanta-
padas’, M.Phil dissertation, SCSS, JNU

3 Bhadra Manji, 2007, ‘Computational analysis of Gender in Sanskrit Noun Phrases for
Machine Translation’, M.Mhil dissertation, Special Center for Sanskrit Studies, JNU

4 Singh Surjit Kumar, 2008,‘Krdanta Recognition and Processing for Sanskrit’, M.Mhil
dissertation, Special Center for Sanskrit Studies, JINU

5 Agrawal Muktanada, 2007, ‘Computational Identification and Analysis of Sanskrit Verb
Forms of bhvadigana,” M.Phil dissertation, Special Center for Sanskrit Studies, JNU

6 Chandrasekhar R, 2007, * Part of Speech Tagging for Sanskrit’, Ph.D. thesis, Special Center
for Sanskrit Studies, JNU
7 Tha Girish Nath, Misra Sudhir, ‘Semantic processing in Panini’s karaka system’ Presented in

second International Sanskrit Computational Linguistics Symposium at Brown
University,2008

Sanskrit Analysis System (SAS)

For example —

INPUT : 9o * et foheg arsaren anforar afiear emqure wafd |
PREPROCESSING: WISt eftwelt =g =raret anforar wffier enquie usfa |
*SANDHI : W 3T={

et foheg Trsre aforaRr gfaar argae Tefa |
#4SAMASA: WIS 3T=¢

it Ry Tr=are sforaRr gfaar

T GreH

Tafd |

SUBANTA: WiT 3=t

il T e TR

FR=gIAV]

oIl G YA ThaaT

Fifetent T T Tha

gfer

TS Verb]

GENDER: #Isi 37t

T [sf:hf] I TLAT Thaad

fR=gIAV]

ISl sf:hf|[STT 1T TLHT Thd=T

aferahT[sf:hf] [2TT] I ToAT Tha=

gfer

&g [sm:hm][$¥H wet g UId[sm:hm] 3TH fBdtar Tehad
TBfA[Verb]> feminine

KRDANTA: 9T 31=¢

eftet [sf:hf] § TLHT Teha=T

FR=gIAV]

IS sf:hf|[STT 1Y TLHT Thd=T

IferehT[sf:hf] [ZTq] § THAT TeharerT

w9 @]

&1 [sm:hm]S$H et g Urg[sm:hm] 3TH EGIE Teha<T
TBfA[Verb]> feminine

#*T ADDHITA: HIsT9 37=i¢

efferedl [efHq w1 [sf:hf] §F TAHT Thaad

fRI[AV] T=ae[sf:hf][ETCIT T Thaa

aIferehT[sf:hf] [ZTq] § THT TeharerT

3

4 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal$,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

iR g @]

&g [sm:hm][$H wet g Uid[sm:hm] 3TH Bfar Tehad

tI?J"I'%f[Verb]> feminine

TINANTA: |99 3¢

efferedl [efH #qT] [sf:hf] §F TAHT Thaa

fR[AV]

AT sf:hf | [STT 1Y TUHAT Tha=T

IferehT[sf:hf] [ZTq] § T TeharerT

iR 9 @]

&7 [sm:hm]S$H ot g UrS[sm:hm] 3TH EIEN Teha<T

BT { (Fdared) U8 ([v 1 [W 1 ["REE 1) ([@2 1) fig ([@]
[T99-Y&Y] [Tdadd 1) } > feminine

POS TAGGER: HISTT 3T={[N]

et Adj] [7] [sf:hf] F THT Tha=

fR=gIAV]

Toaesf:hf][Adj] [T T T Tha=

eI N][sf:hf][2T THT Tehar=rT

iR 9 @]

T[N][sm:hm]SH ¥t aga= WS[N][sm:hm] 3 fBdtar wawa=

W { (Fdard) Te ([w@fqmur 1 [W 1 [w&d® 1) ([|2 1) fag ([=i
1 [7am@-g&y] [T&ha9d 1) } > feminine

KARAKA: I 31=R](&H)[N]

efteret () [Adj] (o 7] [sf:hf] F TeAT Tha=

FR=gIAV]

Foae(aT)[Adj][sf:hf][ZTIIG T THaET

aferaRT(@an)[N[sf:hf] [2Tq] § T ThHaaT

iR g @]

&[N [sm:hm|SH F8I Iga= Wre(@#)[N][sm:hm] ¥ fEdrar wwa=

W { (Fdara) Te ([w@fqmur] [W 1 [w&d® 1) ([@2 1) fag ([w=d
1 [gam-g&y] [T&ha9d 1) } > feminine

Sanskrit Analysis System (SAS) 5

2 Description of each module

2.1 Sandhi module

The analysis procedure of the sandhi analysis system uses lexical lookup method as
well as rule base method. Before sandhi analysis process, pre-processing, lexical
search of sandhi strings in sandhi example base and subanta-analysis takes place
respectively. The pre- processing will mark the punctuation in the input. After that,
the program checks the sandhi example base. This example base contains words of
sandhi-exceptions (varttika list) and commonly-occurring sandhi strings (example
list) with their split forms. These words are checked first to get their split forms
without parsing each word for processing. After lexical search, subanta analyzer gets
the case terminations (vibhakti) separated from the base word (pratipadika). Subanta
analyzer also has a function to look into lexicon for verb and avyaya words to exclude
them from subanta and sandhi processing.

2.1.1 Sandhi rule base

The rule base has been built up in the following format:

input Sanskrit text

!

pre-processing

subanta processing

!

rule base

!

result generator

l

lexical lookup

!

subanta processing

l

lexical lookup

l

output

Rules for vowel sandhi are in format of

TS=T+37: (qIEUH T TS UeTIe), 35 =31+ 37: (T8 f=: Ug uered); 3mqs=1
+:(ST, T SAaTTa:); ST s =T+ 5 (STANCH I, TR SIaTaTa:) 3 s =311+ (TS
R0, T saTaa:), s =31+ (AR, Talsgamara:); 795 =79 +s:(AM T Tl

6 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawals5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

Fuife); 79qs= 75 +s: (A0 T T FuI);

In these rules, the Roman character ‘s’ stands for svara or vowel. This rule applies on
the string after phoneme splitting. When phonemes are split, there are only vowels,

consonants, avagraha, visarga and anusvara. For example the rule F773s= T+s means

when in the phonemic string a sequence of characters appears as ‘3T followed by ‘g’

then ‘s’ (or any ‘svara’), then replace it by the right hand side of the ‘=" sign of the
rule. In the RHS of the rule, ‘s’ means that svara (not any svara) which is in LHS of
the rule. The case of variable ‘s’ is the same as in the rules of ayadi sandhi. Some of
vowel sandhi rules make changes depending upon consonants. Operations depend
upon consonants in following ways - on voiced consonants, unvoiced consonants and
also as semivowels.

3 Subanta analyzer

Sanskrit is a heavily inflected language, and depends on nominal and verbal
inflections for communication for meaning. A fully inflected unit is called pada.
Inflected nouns are called subanta pada and inflected verbs are called tinanta pada.
According to Cardona®, a Sanskrit sentence has NPs (including avyayas (AVs)) and
VPs. It is defined as (N-En)p...(V-En)p. After sup and tin combine with pratipadika
(PDK)’ they are assigned karaka stipulations to return complete sentence.

3.1 Sanskrit subanta (inflected nouns)"’

Sanskrit nouns are inflected with seven cases in three markers. Sanskrit nouns can be
further divided as primary derived forms (krdanta), secondary derived forms
(taddhita), compounds (samdasa). There are 21 suffixes called sup (seven vibhaktis
combined with three numbers)'' which can be attached to the nominal bases (PDK)
according to the syntactic category, gender and end-character of the base. Apart from
these suffixes, there are upasarga (prefixes) which can attach to the PDK. But a PDK
with only upasarga cannot be used in sentence without vibhakti. In Sanskrit, there are
indeclinable (AVs) which are subanta but remain unchanged under all morphological
conditions. "

8 George Cardona, 1988, Panini His Work and Tradition, vol...I DelhitMLBD 1988)

9 arefaeaTqyed: WRUREHT 1.2.45, FafSaamas 1.2.46

10 jha Girish Nath et al., ‘Inflectional Morphology Analyzer for Sanskrit, pages 47-66
Proceedings of First International Sanskrit Computational Linguistics Symposium October,
2007

1 weraresera i A R e A
12 gt By gy wafg = Rwfry/ aomy = 9dy 99 AT 997 (Gopatha Brahmana)

Sanskrit Analysis System (SAS) 7

3.2.1 Recognition of punctuation

The system recognizes punctuations and tags them with the label _PUNCT. If the
input has any extraneous character, then some normalization takes place. For example
- UE/& % @#T:, T, —=cTeh: = TH:, Felah: .

The Devanagar Sanskrit input text is then sent to the analyzer.

3.2.2 Recognition of avyaya

The system takes help of avyaya database for recognizing AVs. If an input word is
found in the AVs database, it is labeled AV, and excluded from the subanta analysis.
Around 524 avyayas are stored in the database.

3.2.3 Recognition of verbs

System takes the help of verb database for verb recognition. If an input is found in the
verb database, it is labeled VERB and not sent for further processing. Since storing all
Sanskrit verb forms is not a good option for computational reasons (there are 2000
verb roots and forms generated from it would be in the millions. Besides, there are
innumerable namdhatus as well and a regular verb form can be conjugated as
sannata, nijanata etc as well). The SAS has 450 commonly used verb roots and their
regular forms plus mechanisms to recognize unseen verbs (in the tirianta module) as
well.

3.2.4 Recognition of subanta

Thus a process of exclusion identifies the nouns in a Sanskrit text. After the
punctuation, avyayas and verbs are identified, the remaining words in the text are
labeled as SUBANTA.

3.3 Analysis of subanta

System does analysis of inflected nouns with the help of two relational databases —
examples and rules. Brief description of these databases follows-

3.3.1 Example database

All complicated forms including those of some pronouns which cannot be easily
analyzed according to rules are stored in the database. For example: 3gH=3T&Hg+Y

T UHTOT, AT =NEAG+Y YU UHIDT; MAm=ereHg+3t wermr fEaw
AT=3TAG+3T TN RBa= T, FaH =3 AT+ YT qga<,ad =TG-+ Ter
g

8 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawals,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

3.3.2 Rule database

The subanta patterns are stored in this database. This database analyzes those nouns
which match a particular pattern from the rule base. For example, TH: T, T,
J&hH etc. First, the system recognizes vibhakti as the end character of nouns. For
example, ‘:’ is found in nominative singular like- TH: 3I1H: T W Th: . The
system isolates ¢’ and searches for analysis in the sup rule base. In the case of
nominative and accusative dual, PDK forms will be ending in “* . For example, '{THSF,

ERICIN 'Flﬁﬁ;, Qaﬁ' The system isolates “¥* and searches for analysis by matching the
rule database. The sample data is as follows-

T=T+Y TUAT THTa; TR =+ T qdrar aqeff gsomt e, Tear= -+ qeftar
T Tt Raem;wm =+ qarr agef Teer e war=+war gt aget
ToeHT TR = + v, el uset age; e =+ wqeft tsedt age;

4 Gender analyzer

After subanta analyzer one can get information about Sanskrit nouns. But still gender
information is not fully analyzed by subanta analyzer. In Sanskrit, there is gender
agreement between adjectives and noun. Though there is no gender agreement
between verb and the agent like Hindi, but krdanta forms agree with agent in terms of
gender in a sentence. If machine has to understand Sanskrit language then it needs to
understand the gender also like any other grammatical category. In the absence of a
correct gender analysis of Sanskrit NPs, the target language translations may be
wrong.

4.1 Description of the gender analyzer

The gender analyzer gets each sentence as a token. Then it sends the token for pre
processing. After pre processing, it finds the verb and avyayas using database and
excludes them for further processing. If in the text there are multiple NPs with
conjunct or comma, then it gets separated NP chunks separated by conjunct or
comma. After that, the system takes help of subanta analyzer to obtain PDK. After
obtaining PDK, the system takes the help of lexical resources to get gender
information of nouns. If enough information about gender is not found then the
system looks for rules. At the end, it suggests the collocational gender of a sentence
with respect to a target Hindi sentence.

Sanskrit Analysis System (SAS) 9

4.1.1 Rule base for gender analyzer

The present subanta analyzer of Sanskrit analyses the Sanskrit words with
pratipadika with vibhakti markers. Some vibhakti markers help to identify the gender
of a word. For example, the word naran can be analyzed as masculine gender from
the vibhakti marker an, and the number of the word would be plural. If the word
appears in the input with this particular vibhakti, then the gender recognition of the
word would be easy. The problem with this method is that the particular word has to
arrive in the input with this particular vibhakti. As a consequence of this step, there
would be huge numbers of words whose gender would be unrecognized by the
system.

4.1.2 Rules of Linganusasana

Gender can be recognized from the last but one syllable of the word. The technical
name of this category is upadha (penultimate)."

upadha clause Gender Example Exception
k t n, th if the Masculine stabaka, chibuka,
n, p, bh, ma, | word ends in ghata,dipa, lalata,papa,
Y, 7,8, a bhanu etc ratna etc
L if the Neuter phala tisla, upala etc
word ends in
a

Among these words, if some words are used as proper names then it would follow the
gender of a person if the name is a mythical and famous one, for example ambarisa.
After this step, the gender of a large number of words would remain unrecognized. To
handle this problem, another rule from Linganusasana is implemented for gender
analyzer. The rule depends on the last varna of the word. For example, if the word
ends in r (pitr, bhratr), generally the gender of the word would be masculine. But
there are exceptions to this rule, like the words matr, nanandr etc in the feminine
gender.

After the application of the Paninian rules, there are still a large number of Sanskrit
words whose gender recognition is very difficult. For these kinds of words, the gender
can be recognized from the last syllable of the word apart from the Paninian rule. For
example, if the ending syllable is a then the gender of the word would be masculine.
If the ending syllable is a then generally the gender of that word would be feminine.
But there are exceptions to this rule as visapa, dara, haha etc.

13 JreATswATge 3w

10 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

5 Krdanta analysis

All the verbal suffixes besides tin are called krz. krt is a technical term of Paninian
grammar that covers a vast field, both structurally as well as semantically.14 The
primary nominal derivatives from the verb roots are krdanta. The krt suffixes are
added to roots or their modified forms, to form nouns, adjectives and indeclinables,
for example kr - kara, krtr, karana, kurvat, karisyat, cakrvas, krtva, kartum. These
are called krdantas or primary derived nominal bases."

5.1 Krdanta identification and analysis mechanisms

The process of krdanta analysis mechanism is divided into two sections - recognition
and analysis.

5.1.1 Krdanta identification mechanism

The krdanta recognition starts by an exclusion process. The verb forms, avyayas and
punctuations are excluded by running POS tagger by checking the verb, avyaya and
pronoun databases and punctuation lists. The nominal bases are obtained by the
subanta analyzer which is a part of the POS tagger. These nominal bases are then
checked in fixed lists by the POS tagger. This may result in some of the subantas
being marked for krdanta. The remaining subantas are sent to the krdanta recognizer
and analyzer system for recognition and analysis using following steps —

e check the krdanta database, annotated corpus and krdanta-tagged Monier
Williams Sanskrit Digital Dictionary (MWSDD).

e the subantas still untagged for krdanta are sent to the rule base for krdanta
checking.
the rule base applies Paninian rule base in reverse for marking krdantas.
it is possible that even after these systematic identification procedures, there
may remain an untagged krdanta subanta. This will count as failure of the
system.

14 Sharma, Dipti, Structure and Meaning,1982 Nag Publishers New-Delhi
15 Kale, M.R., A Higher Sanskrit Grammar

Sanskrit Analysis System (SAS) 11

5.1.2 Krdanta analysis mechanism

The system is divided into two parts- lexical database and rule-base. Lexical database
of examples has been created for analyzing those forms which would be otherwise
very complex to analyze if passed through the rule base. Lexical database has three
major parts- a lexical krdanta database with complicated krdanta forms and their
lexical information, Monier Williams Sanskrit Digital Dictionary and corpus of the
current Sanskrit prose with krdanta words tagged with krdanta information.

The rule-base is for analyzing more regular forms. It consists of mainly three tables,
namely, upasargavikara table, dhatuvikara table and pratyayavikara table. To restrict
dhatuvikara and pratyayavikara from inconsistent combinations, both are bound with
a unique id.

For example, U3 [(T8+UeT/T3+ 0+ U]\ TerHT-Tshda =]

6 Tinanta analysis

Verbs have been of central importance to Sanskrit grammarians. Yaska insisted so
much on them that he propounded that all the nominal words are derived from verb
roots'®. Like noun padas, verb padas (tinanta) have to undergo certain inflectional
process in which various verbal affixes are added to verb roots or dhatus. These
dhatus are encoded with the core meaning of the verb. These can be primitive'” or
derived'®. Primitive verb-roots, which are around 2000 in number, have been listed in
a lexicon named dhatupatha. They are divided in 10 groups/classes called ganas. All
the verb-roots of a group undergo somewhat similar inflectional process. Derived
verb-roots may be derived from primitive verb-roots or from nominal forms. Prefixes
also play an important role as they can change the meaning of a verb root. These roots
then have to undergo various inflectional suffixes that represent different paradigms.
In this process, the base or root also gets changed.

6.1 Process of formation of Sanskrit verb forms

A Sanskrit verb root may take various forms. There are ten lakaras that represent
Tense, Aspect and Mood. Inflectional terminations are 18 in number. These are
divided in two groups — parasmaipada and atmanepada, each having 9 affixes which
is a combination of 3 persons x 3 numbers. A verb is conjugated in either pada,

16 bhavapradhanamakhyatam (Yaska, Nirukta)
17 phuvadayo dhatavah (P 1/3/1)

18 sanadyanta dhatavah (P 3/1/32)

12 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

though some of the roots are conjugated in both. For each different lakara, a root is
affixed with these 9 terminations. Again, there are three voices- Active, Passive and
Impersonal. Transitive verbs are used in the Active and Passive voices while
intransitive verbs are conjugated in the Active and Impersonal voices. Addition of one
or more of 22 prefixes (upasargas) to verb roots can result in more variety of forms.
Derivative verb roots, both derived from verb roots as well as nominal words, also
follow the same process to form verb forms. There can be some specific rules and
exceptions in some cases. The following chart gives a rough estimate of possible
verb-forms in Sanskrit'® . This is to suggest that Sanskrit verb forms can not be stored
in the database because the derived verb forms can be potentially innumerable.

2000 verb roots
+ derived bases
(causatives, desideratives, frequentatives, denominatives)

|
TAM [10 lakaras]
i
[1
parasmai atmane
1 !
10x9 forms 10x9 forms
! i
22 upasarga 22 upasarga

The verb roots of different ganas adapt certain terminations when tin affixes are
added to them. The tin affixation also influences the verb root and it undergoes
several morpho-phonemic changes, for example, having guna operation on the end
vowel. The verb root can adopt certain operations resulting in the final verb-forms.

bhii + ti(p)

bhii+(s)a(p) + ti (infixation of characteristic)

'

bho +a+ ti (penultimate vowel gunated)

19 Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit morphology,
in proc.of SIMPLE 04, IIT Kharagpur, pp. 79-81.

Sanskrit Analysis System (SAS) 13

bhav a ti (ayadi sandhi)

As shown in the example, when suffix #ip is added to the verb root bhii, then bhavati
form is obtained as the final verb form. This can be cited as a common analysis of
most verb forms.

6.2 The Analysis of Sanskrit Verb Forms

The methodology for the analysis of Sanskrit verb form in the present work follows
the analysis of Panini in somewhat reverse direction. Paninian analysis identifies
different morphemes in any given pada and presents an analysis where he provides
step-by-step methodology to derive a verb form from a given verb root in certain
paradigms. As illustrated above, Sanskrit verb forms are a blend of multiple
morphemes which contain relevant information. Analytically it can be said that the
first element is the conjugational affix that remains at the end of every verb form.
These affixes have encoded information of pada (though it is determined by root),
lakara, person and number. Thus termination can serve as the most important thing to
convey about the paradigm information of any verb form. They can be a tool to
identify a verb form in a given text. The terminations, as they are basically
replacements of 18 original tir affixes in different lakaras, differ among themselves
according to lakaras. However in each lakara, they are similar for all verb roots of
various groups, leaving some expectation. So #i can be used to identify any verb form
of present tense of parasmaipada. But some terminations can vary among themselves
for a group of ganas. Then again, the termination may be changed due to
morphophonemic environment, ta affix of lut lakara, changing to ta with roots like

yaj.

Further left, there are various morphemes of the various characteristics and
increments inserted between the verb root and terminations, in the process of their
formation explained above. Bhvadigana verb forms in conjugational lakaras, have ‘a’
as a result of sap characteristics; svadi roots have no, nu or nv all of them remaining
morphemes of snu. Some roots like that of adadi have no such characteristics sign
infixed in them.

At the right end of the verb form, there is modified stem of the verb root. The
modification can be guna, vrddhi or any other. Generally a root adopts a common
stem in all the forms for both padas in conjugational lakaras. So bhav is the stem for
all parasmaipadi forms in the conjugational lakdaras. But there are exceptions to it to
that extent that four or five types can be found among nine forms of a single lakara
pada.

Here the first morpheme the tip termination is common among all verb forms of a
particular pada-lakara- purusa -samkhya combination. Second constituent, the
characteristics (existing in the form of its remaining morpheme) and increments
inserted in between may differ, yet being almost the same in a particular group. The

14 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal$,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

third constituent, the modified verb-root is particular in the strict sense. In the
analysis, the recognition of the #in will identify a word as a verb form and find out its
pada-lakara- purusa -samkhyd. The second morpheme can, in many cases, be helpful
to recognize the gana of a particular root because the characteristics in a lakara are
determined by the gana that the roots belong to. Thus the core of the analytical
approach is that each tirianta verb form can be analyzed to form a unique combination
of verbal stem + tiri termination, and both of these constituent parts are stored in
separate tables. When it is to be analyzed, its constituent morphemes are recognized
and identified with the help of pre-stored structured data.

7. POS Tagger

After getting the information about inflected nouns of Sanskrit, it is necessary to
understand the role of each word in a sentence. This process of marking up the words
in a text as corresponding to a particular part of speech, based on both its definition,
as well as its context—i.e., relationship with adjacent and related words in a phrase,
sentence, or paragraph20 is called POS tagging. A typical POS tagger acts as a shallow
parser and is pre- requisite in several NLP related applications such as machine
translation system, information retrieval word sense disambiguation etc. Sanskrit is an
inflectional language and words in a sentence carry information about entities in
terms of stem, endings, gender, case, number and case relation, while verbs denote
activity, function reaction, mode, voice, tense, person, number etc. Extracting and
organizing, i.e. annotating, these information is the first step towards understanding
the language. Words in a language may occur in POS or various grammatical
categories as they are also known. In Sanskrit for example

1) gacchati can be either a tinanta or krdanta

2) ramah can either be a namapada (abhidhana) or tinanta

3) dyatah can either be a krdanta or tinanta

4) ma can either be an avyaya or namapada or a sarvanaman etc

7.1 The Sanskrit Tagset

The designed tagset is classified according to the morphological structure of the
categories. There are two kinds of tags in this tagset. Word class main tags and feature
sub-tags. The tag as a whole is a combination of word class main tag with feature sub-

20 http://en.wikipedia.org/wiki/Part-of-speech_tagging

Sanskrit Analysis System (SAS) 15

tags separated by an underscore. All the tags bear Sanskrit names”' with letter-digit
acronymic in Roman script.

The process first involved evolving a stable tagset for Sanskrit text which has 65 word
class tags, 43 feature sub-tags, and 25 punctuation tags and one tag UN to tag
unknown words — a total of 134 tags. A single full tag is a combination of word class
tag and feature sub-tags (indeclinable and punctuation tags do not have sub-tags). The
word class tags are 8 Noun tags, 8 Pronoun tags, 3 Adjective tags, 9 Participle tags, 2
Number tags, 14 Compound tags, 11 indeclinable tags and 10 verb tags. Feature tags
are three gender sub tags (p,s,n); 8x3 = 24 (Nominal)Case and Number tags (1.1
through 8.3); 4 Verb base modifying tags (Nd, Yn, Sn, Ni); 1Verbal Preposition
(UPA); 2 Pada tags (P and A); 3x3 =9 (Verbal) Person and Number tags (1.1 through
3.3).

7.2 Description POS Tagger

7.2.1 Pre-processing

After getting Unicode (UTF-8) sandhi free Devanagari Sanskrit input (or with
minimal sandhi) as word, sentence or text, the system sends those input for pre
processing. In this step, the system searches for punctuations in the input and tags
them. In addition to tagging the punctuations, this function also removes unwanted
foreign letters or punctuations from the inside of a Devanagari string.

7.2.2 Fixed-List Tagger

After initializing the input, the system goes to check in the fixed tagged lists. This
database stores lists of avyayas, list of verbs and POS list. The POS example base
consists of approximately 1 MB data. For example

rsafdlP_laTV_1.1)/[KV1_p_7.1)/[KV1_n_7.1];3rs=a:[P_laTV_1.2]/[KV1_p_2.
3)/[KV1_p_5.1)/[KV1_p_6.1/KV1_n_5.1)/[KV1_n_6.1];3r==af~P_laTV_1.3)/[K
V1_n_1.3)/[KV1_n_2.3];35P_laTV_1.1)/[KV1_p_7.1}/[KV1_n_7.1];3r<Ta:[
P_1aTV_1.2J/[KV1_p_2.3J[KV1_p_ 5.1J[KV1_p_6.1/KV1_n_5.1)/[KV1_n_6.1];
AP _laTV_1.3)/[KV1_n_1.3)/[KV1_n_2.3];amIN_n_1.1}/(nAman)N_n_2.
11;9RHIN_n_1.1)/[(prathama)N_n_2.1)/[N_p_2 1}/[AVKV];a=HIN_n_1.1]/[(tan
tra)N_n_2.1];3=[ISNS_n_6.1]/[(yad)SNS_p_6.1];#eINVI_p_1.1}/[(maha)N_p
_2.3];REmgwar:IN_p_6.2)/[(siMhagovRuSha)N_p_7.2)/[N_s_6.2)/[(siMhagov

2l Few names are coined in English for the purpose of clarity and to avoid confusion while
marking their notions. The tags having English names are all the compound tags containing
‘C’ for Compound and few punctuation tags.

16 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

RuShA)N_s_7.2];@9IN_n_7.1)/[(vana)N_n_1 2)/[(vana)N_n_2.2];dd[SNN_n_1.
1]/[(tad)SNN_n_2.1];ﬂ%ﬂTﬁWl{[N_n_1.1)/[(mahilAropya)N_n_2.1];THIN_n_1
1)[(nagara)N_n_2.1];

If the token is found, it gets tagged with corresponding tag from the lexicon.

7.2.3 subanta analyzer

However, a large number of input tokens are not found in these lists as they may be
marked for subanta. Therefore the next component of subanta analyzer checks
untagged input in the subanta examples. If not found, it starts analyzing the token
from the right end and checks in the lexicon after each appropriate cut. If it is found, it
tags the input. If after all these steps, the input remains untagged, it gets the ‘not
found’ tag. The resultant tagged token is sent back to the main tagger ‘Post’ which
linearizes the results with adding color schemes for ambiguous and untagged tokens.

8 Karaka analysis

After understanding words in a Sanskrit sentence, it is necessary to understand how
the words are arranged in a sentence, what are the relation between other words and
verbs. In Sanskrit, this relation can be understood while analyzing karaka relation.
Etymologically karaka is the name given to the relation between a noun and a verb in

a sentence. It means ‘that which brings about’ or ‘doer’. 2

8.1 Karaka and vibhakti mapping

Panini discusses the entire gamut of karaka-vibhakti relations in three sections of
Astadhyayt

e karaka siutra (P. 1.4.23 — P. 1.4.55) & 33 siitras
e vibhakti sitra (P. 2.3.1 - P.2.3.73) = 73 sitras
e karma-pravacaniya (P. 1.4.82 —P. 1.4.97) > 16 satras

Now the problem of implementation of all karaka rules is that there are rules of
vivaksa dependent operations. In the example Tl Tafd, Tt should be

22 A detailed description of karaka and its mapping with vibhakti is given in Jha Girish Nath,
Mishra Sudhir K., ‘Semantic processing in Panini’s karaka system’ Presented in second
International Sanskrit Computational Linguistics Symposium at Brown University,2008

Sanskrit Analysis System (SAS) 17

Location as it is the 3R (&Tﬂ'l’ﬂ'sfam), but it is &IT by rule ESIPETED SHH
because the speaker thinks it is the most instrumental (ATERdH (THE)) and
therefore prefers Instrumental case. wHHoT TR T TEEy prescribes Dative for
the receiver of gift, but vartika \aﬁrmam% T AT ?alﬂ'g'chf T prohibits it if
the gift was intended for deriving some benefit (sexual favor in this case).Vartikas
extend, limit Paninian rules, for example - Fr—a@n Frafa aeafa ar 9 ‘ﬂ?i:r)
allows karana if the verb is d or d@ . It thus limits

Tﬁ@@qwm Hat | Uﬁﬁﬂw TEIATEr: which allows
karma. Sometimes vartikas limit themselves ﬁﬂw EERIELLH (if the karta is
‘sarathi’ or any of its synonyms then Fr—a@T does not apply > areafa EIEEY
Hd: (karma by Panini’s Tlﬁ@'@ siitra). Another problem is how to implement

semantic conditions such as, W,é@ﬁ/é@m,waw,aﬁﬁ‘ﬁ (to be 34@'&'@ -
approach someone for gift), JIEHT: (one who gets pleased - wegetr figmmT:) -
TR T ‘ﬂ%;%‘q’ (fixed point) 3TUTT (path of separation) WW,WI
ST AT (is 3THT an 3MER or §d ?) STEUSEHWM (MM AT 2) ete.

A tentative model of karaka analyzer is given below.

1. VERB ID

2. VERB ANALYSIS

3. NON—VERB ID

4. SUBANTA ANALYSIS
##5, AKANKSA CHECK

#+6, KARAKA RULES

##7 SPECIAL CONDITIONS
8. KARAKA ASSIGNMENT

In this model, the starred modules are under implementation. While analyzing the
verb, the system will take the help of tirianta analysis. For tokenizing the tinanta , the
system checks every character of the word through reverse module and matches
through verb database for recognizing the tinanta pada which is used in the sentence.
If it is found, then all information which is relevant in karaka analysis are provided to
system for further implementation. Otherwise it returns to check again if dhatu is used
with upasarga and after recognizing upasarga, the system removes the upasaga from
the verb, and again checks it for dhatu identification number and the result is sent to
dhatu information database for getting the relevant information of the dharu. After the
verb analysis, the system checks for non verb words and then it takes help of subanta
analyzer and karaka assignment is implemented. In between, there are some steps like
akanksa checking, and special semantic conditions are not implemented yet.

18 Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

9 Result analysis and limitations

Currently the modules of the SAS are not integrated. Individual modules can be tested
as http://sanskrit.jnu.ac.in. The limitation of lexical resource may affect some
modules. In sandhi analyzer, if the input is RAEE: the output will be e ar:

(rafeaf=r Tersaamams:), Bt o1 (aur By gar qu), Rwfer or: (aup B g
Futs), foar srer: (R sre: waut <), B srer: (SR st waut <)
" e (SwfRr era: waur). Here, the system gives multiple answers with

appropriate rules of Panini as it finds all the parts in these results as valid words in
the 200k Sanskrit dictionary. Future enhancements in this module will select the most
common output based on a frequency marling in the dictionary. The subanta analyzer
can not recognize many forms and is being currently updated. In the gender analyzer,
lexical resources may hamper the result. The system cannot identify gender of those
words which are used in different gender in different meaning properly, like the word
mitra. Sometimes the system fails to check proper gender agreement as well. There
are limitations of the Krdanta, Tinanta, POS tagger and Karaka modules as well
which are being improved currently.

10 Conclusion

The authors in this paper have presented an ongoing work for developing a complete
SAS. Currently, the SAS has some modules partially developed and some under
development. Significant future additions will be the ambiguity resolution modules
like anaphora resolution. After the karaka checking module, a disambiguation module
is also going to be added in near future, to resolve problems like ‘bhavati ! bhiksam
dehi’. Here according to the SAS system, bhavati and dehi both get verb tags. But
here bhavati is used as noun and in vocative. If there is proper punctuation like an
exclamation mark after this word then one can say it is used in vocative. If there is no
punctuation mark then the problem can be resolved by counting verbs in the sentence
which in most cases can be only one. These kinds of problems are to be handled in the
disambiguation module. For the testing of the system, 140 files in unicode Devanagari
have been collected. Those texts are in simple Sanskrit and collected from different
sources mostly samples of current Sanskrit. Though there is no complete statistics of
the results, but one of the tests in subanta with simple Sanskrit gave a 90% accuracy.

The table is given below.

S.No. File Theme Source | Words Time(secs)
1 Corpus-1 raja sagarah sandesah 609 3
2 | Corpus-2 samrata asokah sandesah 916 3.2
3 Corpus-3 ekah nibandhah sandesah 882 3
4 | Corpus-4 cacd neharuh sandeSah 332 1
5 | Corpus-5 sarasvati _vandand | sandesah 241 1

Sanskrit Analysis System (SAS) 19

and a story
6 | Corpus-6 adhunika prasasanah | sandesah 1045 3.5
7 Corpus-7 ekah vanikah sandesah 849 2
8 | Corpus-8 pasya me riapani sandesah 1328 4
9 | Corpus-9 Sanskrit siksa sandesah 306 2
10 | Corpus-10 | sanghe Saktih sandesah 4207 6
References

1. Acharya Vamdeva, 1990. ‘Linga-Parijnanam’, Shabdatattva Prakashan Varanasi

2. Agrwal Muktanada, 2007, ‘Computational Identification and Analysis of Sanskrit
Verb Forms of bhvadigana,” submitted for Mphil degree at SCSS, INU

3. Bhadra Manji, 2007, ‘Computational analysis of Gender in Sanskrit Noun Phrases for
Machine Translation’, submitted for Mphil degree at SCSS, JNU

4. Bharati, Akshar, Vineet Chaitanya & Rajeev Sangal, 1991, A Computational
Grammar for Indian Languages Processing, Indian Linguistics Journal, pp 52, 91-103

5. Bharati, Akshar, Vineet Chaitanya & Rajeev Sangal, 1995, Natural Language
Processing: A Pan Perspective, Prentice-Hall of India, New Delhi.

6. Cardona George, 1967, Panini’s syntactic categories, Journal of Oriental Institute
Baroda 16:201-15

7. Cardona George, 1988, Panini His Work and Tradition vol...I Delhi(MLBD 1988)

8. Cardona George, 2004, Some Questions on Panini’s Derivational System, procs of
Splash, iSTRANS, Tata Macgraw-Hill, New Delhi, pp 3

9. Chandrasekhar R, 2007, ‘ Part of Speech Tagging for Sanskrit’ , submitted for Phd
degree at SCSS, INU

10. Jurafsky Daniel and James Martin, 2000, Speech and Language Processing, Prentice-
Hall of India, New Delhi.

11. Edgren A.H 1885, On the verbal roots of the Sanskrit language and of the Sanskrit
grammarians, Journal of American Oriental Society 11:1-5

12. Huet, G’erard, 2003, Towards Computational Processing of Sanskrit,
RecentnAdvances in Natural Language Processing, Proceedings of the International
Conference ICON, Mysore, India

13. Jha, Girish N. et al., 2006, Towards a Computational analysis system for
Sanskrit,Proc. of first National symposium on Modeling and Shallow parsing of
Indian Languages at Indian Institute of Technology Bombay, pp 25-34

14. Jha, Girish N, 2003 A Prolog Analyzer/Generator for Sanskrit Noun phrase
Padas,Language in India, volume-3,

15. Jha, Girish N, 2004, Generating nominal inflectional morphology in Sanskrit,
SIMPLE 04, IT-Kharagpur Lecture Compendium, Shyama Printing Works,
Kharagpur, WB. Page no. 20-23.

16. Jha, Girish N., 1993, Morphology of Sanskrit Case Affixes: A computational
analysis, M.Phil dissertation submitted to J.N.U., New Delhi

17. Jha, Girish N., 2004, The system of P, Language in India, volume4:2,

18. Jha Girish Nath, Misra Sudhir, ‘Semantic processing in Panini’s karaka system’

Presented in second International Sanskrit Computational Linguistics Symposium at
Brown University,2008

20

Manji Bhadral, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawals5,

R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

1

9. Joshi, S. D., 1962, Verbs and nouns in Sanskrit, Indian linguistics 32 : 60- 63.

20. Kale, M.R.,1995, A Higher Sanskrit Grammar, MLBD, New-Delhi
21. Kapoor, Kapil, 1985, Semantic Structures and the Verb: a propositional

22.

23.

24.

analysis,Intellectual Publications, New Delhi
Kumar Sachin,2007, ‘Sandhi Splitter and Analyzer for Sanskrit (with reference to ac
Sandhi)’, submitted for Mphil degree at SCSS, JNU
Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit
morphology, In proc. of SIMPLE 04, IIT Kharagpur, pp.79-81
Mishra, Sudhir K & Jha, Girish N, 2004, Sanskrit Karaka Analyzer for Machine
Translation, In SPLASH proc. of iSTRANS, Tata McGraw-Hill, New Delhi, pp. 224-
225.

25. Mitkov Ruslan, The Oxford Handbook of Computational Linguistics,

26.

217.

28.

29.

30.

31.

OxfordUniversity Press.
Narayan Mishra, 1996, (ed). Kashika of Pt.Vamana and Jayaditya ,Chaukhamba
Sanskrit sansthan, Varanasi
Nooten, B. A. Van, Panini’s replacement technique and the active finite
verb,University of California, Berkeley.
Sharma, Rama NATH, 2003, The Astadhyayi of Panini, Munshiram Manoharlal
Publishers Pvt. Ltd., Delhi.
Shastri, Bheemsen, Laghusiddhantakaumudi , Bhaimee Prakashan, 537, Lajapatrai
Market, New Delhi
Singh Surjit Kumar, 2008,'Krdanta Recognition and Processing for Sanskrit’,
submitted for Mphil degree at SCSS, INU
Shastri, Swami Dwarikadas, 2000, ‘The Madhaviya Dhatuvrtti by Saya_acarya’, Tara
Book Agency, Varanasi.

32. Sharma, Dipti, 1982, Structure and Meaning, Nag Publishers New-Delhi

33.

34.

Subash & Jha, Girish N., 2005, Morphological analysis of nominal inflections in
Sanskrit, presented at Platinum Jubilee International Conference, L.S.1. at Hyderabad
University, Hyderabad, pp-34.
Subash, 2006, Machine recognition and morphological analysis of Subanta-padas,
M.Phil dissertation submitted to J.N.U., New Delhi.

35. Upadhye, P.V., 1927, Dhaturupacandrika, Gopal Narayen & Co, Bombay.
36. Whitney, W.D., 2002, History of Sanskrit Grammar, Sanjay Prakashan, Delhi.

Web References:

IT,Hyderabad,http://wwwiiit.net/lItrc/Publications/Techreports/tr010/anu00kbcs. txt
Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/

Huet’s site http://sanskrit.inria.fr/

Prajna system, ASR Melcote, http://www.sanskritacademy.org/Achievements.htm
Aiba, Verb Analyzer for classical Sanskrit,
http://wwwasia.human.is.tohoku.ac.jp/demo/vasia/html/

Desika, TDIL, Govt. of India, http://tdil.mit.gov.in/download/Desika.htm

RCILTS, JNU, http://rcilts.jnu.ac.in

Shabdabodha, ASR, Melcote, http://vedavid.org/ASR/#anchor2
http://en.wikipedia.org/wiki/Part-of-speech_tagging

