
Sanskrit Analysis System (SAS)

Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand
Agrawal5, R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

1, 2, 3, 5,8Special Centre for Sanskrit Studies
Jawaharlal Nehru University

New-Delhi
4C-DAC Kolkata, NLP Group

7Visiting Scholar, Department of Classics, Brown University
7C-DAC Pune, AAI Group

1manji.bhadra@gmail.com, 2surjit.jnu@gmail.com, 3sachinjnu@gmail.com, 8girishjha@gmail.com,
4subhash.jnu@gmail.com, 5mukta.jnu@gmail.com, 6chandrashekhara@gmail.com,

7sudhirkumarmishra@gmail.com

Abstract The paper describes Sanskrit Analysis System (SAS) – a complete analysis system for

Sanskrit. Some modules of this system have already been developed. The system accepts full text

inputs in Devanāgarī Unicode (UTF-8). The sandhi module does the segmenting for complex

tokens and then hands over the text for detailed processing. Currently, the SAS modules have

independent interfaces for unit testing at http://sanskrit.jnu.ac.in . The authors are working on

the integration process of these modules. The SAS has two major components - the shallow

parser and the kāraka analyzer. The shallow parser has separate modules, some of them are

partially implemented, and some of them are in the process of being implemented. The modules

have been developed as java servlet in unicode using RDMBS techniques. The applications of

the SAS will be many ranging from being a Sanskrit reading assistant to machine translation

system from Sanskrit to other languages.

Keywords: sandhi, subanta, ti�anta, k�danta, samāsa, taddhita, strī pratyaya, kāraka,
vibhakti, prātipadika, dhātu, sup, ti�, avyaya, sūtra, vārttika, ākā�k�ā, yogyatā,
vivak�ā, li�ga, upadhā, ga�a, pada, lakāra, vacana, vikāra, upasarga, v�ddhi

1 Introduction

Developing an NLP system which analyzes a natural language is a difficult task.
Sanskrit language has Pā�ini’s grammar which is explicitly generative, while the task
in analysis systems is to apply rules for processing a generated string or utterance.
The authors in this process have tried to use Pā�inian rules in reverse with appropriate
lexical interfacing for analyzing Sanskrit. But in many cases, Pā�inian rules demand
deep semantic analysis, especially in the case of kāraka rules. The SAS has two major
components - one is the shallow parser and the other is the kāraka analyzer. Shallow

2 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

parser contains sandhi
1 analyzer, samāsa analyzer, subanta

2 analyzer, gender
analyzer3, k�danta analyzer4, taddhita analyzer, ti�anta

5 analyzer and the POS
tagger6. Among them the sandhi analyzer is partially implemented and samāsa and
taddhita analyzers are yet to be implemented. After getting the input, the system first
analyzes the sandhi and samāsa by these modules wrapped into a separate system.
Then the system analyzes the nominal inflected words for separating base and
vibhakti and stores the PNG features of the tokens. Primary derived nouns are
analyzed by the k�danta analyzer and secondary derived nouns are supposed to be
analyzed by the taddhita analyzer. The ti�anta analyzer analyzes verbs into affixes,
number and person. After morphological analysis of each word in the sentence, the
POS tagger assigns them appropriate POS category with the help of lexicon, corpus
and other Pā�ini based formulations. The kāraka

7 analyzer takes over from here and
analyzes the syntactico-semantic relations at the sentence level. A brief modular
outline of the SAS is given below –

SAS

 Shallow parser Kāraka analyzer*

 sandhi* samāsa** subanta gender k�danta taddhita** ti�anta tagging

1 Kumar Sachin,2007, ‘Sandhi Splitter and Analyzer for Sanskrit (with reference to ac

Sandhi)’, M.Phil dissertation, Special Center for Sanskrit Studies, JNU
2 Chandra Subash, 2006, ‘Machine recognition and Morphological Analysis of Subanta-

padas’, M.Phil dissertation, SCSS, JNU
3 Bhadra Manji, 2007, ‘Computational analysis of Gender in Sanskrit Noun Phrases for

Machine Translation’, M.Mhil dissertation, Special Center for Sanskrit Studies, JNU
4 Singh Surjit Kumar, 2008,‘K�danta Recognition and Processing for Sanskrit’, M.Mhil

dissertation, Special Center for Sanskrit Studies, JNU

5 Agrawal Muktanada, 2007, ‘Computational Identification and Analysis of Sanskrit Verb

Forms of bhvādiga�a,’ M.Phil dissertation, Special Center for Sanskrit Studies, JNU
6 Chandrasekhar R, 2007, ‘ Part of Speech Tagging for Sanskrit’, Ph.D. thesis, Special Center

for Sanskrit Studies, JNU
7 Jha Girish Nath, Misra Sudhir, ‘Semantic processing in Pā�ini’s karaka system’ Presented in

second International Sanskrit Computational Linguistics Symposium at Brown
University,2008

Sanskrit Analysis System (SAS) 3

For example –

INPUT : pÉÉåeÉlÉÉliÉUÇ * kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
PREPROCESSING: pÉÉåeÉlÉÉliÉUÇ kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
*SANDHI : pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
**SAMASA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ
kÉÉiÉÑhÉÉqÉç mÉÉPûqÉç
ûmÉPûÌiÉ |
SUBANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏç xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ
kÉÉiÉÑ XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉPû AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]
GENDER: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ[sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

K�DANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

**TADDHITA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV] cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ

4 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

TI	ANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ]
[mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

POS TAGGER: pÉÉåeÉlÉ AliÉUÇ[N]

kÉÏqÉiÉÏ[Adj][kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][Adj][OûÉmÉç]xÉ ÑmÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[N][sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ[N][sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[N][sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ
] [mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

KĀRAKA: pÉÉåeÉlÉ AliÉUÇ](MüqÉï)[N]

kÉÏqÉiÉÏ(MüiÉÉï)[Adj][kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ(MüiÉÉï)[Adj][sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ(MüiÉÉï)[N][sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ[N][sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP(MüqÉï)[N][sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ
] [mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

Sanskrit Analysis System (SAS) 5

2 Description of each module

2.1 Sandhi module

The analysis procedure of the sandhi analysis system uses lexical lookup method as
well as rule base method. Before sandhi analysis process, pre-processing, lexical
search of sandhi strings in sandhi example base and subanta-analysis takes place
respectively. The pre- processing will mark the punctuation in the input. After that,
the program checks the sandhi example base. This example base contains words of
sandhi-exceptions (vārttika list) and commonly-occurring sandhi strings (example
list) with their split forms. These words are checked first to get their split forms
without parsing each word for processing. After lexical search, subanta analyzer gets
the case terminations (vibhakti) separated from the base word (prātipadika). Subanta

analyzer also has a function to look into lexicon for verb and avyaya words to exclude
them from subanta and sandhi processing.

2.1.1 Sandhi rule base

The rule base has been built up in the following format:

input Sanskrit text
↓

pre-processing
↓

subanta processing
↓

rule base
↓

result generator
↓

lexical lookup
↓

subanta processing
↓

lexical lookup
↓

output

Rules for vowel sandhi are in format of

LÅ=L+A:(mÉÔuÉïÃmÉxÉÎlkÉÈ,LXûÈmÉSÉliÉÉSÌiÉ);AÉåÅ=AÉå+A:(mÉÔuÉïÃmÉxÉÎlkÉÈ,LXûÈmÉSÉliÉÉSÌiÉ);AÉrÉçs=Lå
+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);ArÉçs=L+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);AÉuÉçs=AÉæ+s:(ArÉÉÌSxÉ
ÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);AuÉçs=AÉå+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);?rÉçs=?D+s:(rÉhÉç xÉÎlkÉ CMüÉå

6 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

rÉhÉÍcÉ);?rÉçs=?C+s:(rÉhÉç xÉÎlkÉ CMüÉå rÉhÉÍcÉ);

In these rules, the Roman character ‘s’ stands for svara or vowel. This rule applies on
the string after phoneme splitting. When phonemes are split, there are only vowels,

consonants, avagraha, visarga and anusvara. For example the rule आयs्=ऐ+s means

when in the phonemic string a sequence of characters appears as ‘आ’ followed by ‘य’्

then ‘s’ (or any ‘svara’), then replace it by the right hand side of the ‘=’ sign of the
rule. In the RHS of the rule, ‘s’ means that svara (not any svara) which is in LHS of
the rule. The case of variable ‘s’ is the same as in the rules of ayādi sandhi. Some of
vowel sandhi rules make changes depending upon consonants. Operations depend
upon consonants in following ways - on voiced consonants, unvoiced consonants and
also as semivowels.

3 Subanta analyzer

Sanskrit is a heavily inflected language, and depends on nominal and verbal
inflections for communication for meaning. A fully inflected unit is called pada.
Inflected nouns are called subanta pada and inflected verbs are called ti�anta pada.
According to Cardona8, a Sanskrit sentence has NPs (including avyayas (AVs)) and
VPs. It is defined as (N-En)p…(V-En)p. After sup and ti� combine with prātipadika
(PDK)9 they are assigned kāraka stipulations to return complete sentence.

3.1 Sanskrit subanta (inflected nouns)
10

Sanskrit nouns are inflected with seven cases in three markers. Sanskrit nouns can be
further divided as primary derived forms (k�danta), secondary derived forms
(taddhita), compounds (samāsa). There are 21 suffixes called sup (seven vibhaktis
combined with three numbers)11 which can be attached to the nominal bases (PDK)
according to the syntactic category, gender and end-character of the base. Apart from
these suffixes, there are upasarga (prefixes) which can attach to the PDK. But a PDK
with only upasarga cannot be used in sentence without vibhakti. In Sanskrit, there are
indeclinable (AVs) which are subanta but remain unchanged under all morphological
conditions.12

8 George Cardona, 1988, Pā�ini His Work and Tradition, vol…I Delhi(MLBD 1988)

9 AjÉïuÉSkÉÉiÉÑUmÉëirÉrÉ: mÉëÉÌiÉmÉÌSMüqÉç 1.2.45, M×ü¨ÉÎ®iÉxÉqÉÉxÉ¶É 1.2.46
10 Jha Girish Nath et al., ‘Inflectional Morphology Analyzer for Sanskrit, pages 47-66

Proceedings of First International Sanskrit Computational Linguistics Symposium October,
2007

11 xuÉÉæeÉxÉqÉÉæOèNû¹ÉprÉÉÎqpÉxXåûprÉÉqprÉÉxXûÍxÉprÉÉqprÉÉxXxÉÉåxÉÉÇXçrÉÉåxxÉÑmÉç
12 xÉSØzÉÇ Ì§ÉwÉÑ ÍsÉ…¡åûwÉÑ xÉuÉÉïxÉÑ cÉ ÌuÉpÉÌ£üwÉÑ/ uÉcÉlÉåwÉÑ cÉ xÉuÉåïwÉÑ rÉ³É urÉåÌiÉ iÉSurÉrÉqÉç (Gopatha Brāhma�a)

Sanskrit Analysis System (SAS) 7

3.2.1 Recognition of punctuation

The system recognizes punctuations and tags them with the label _PUNCT. If the
input has any extraneous character, then some normalization takes place. For example
- UÉ/&^%@#qÉç:, oÉÉ,’”:-=sÉMü: � UÉqÉÈ, oÉÉsÉMüÈ .
The Devanāgarī Sanskrit input text is then sent to the analyzer.

3.2.2 Recognition of avyaya

The system takes help of avyaya database for recognizing AVs. If an input word is
found in the AVs database, it is labeled AV, and excluded from the subanta analysis.
Around 524 avyayas are stored in the database.

3.2.3 Recognition of verbs

System takes the help of verb database for verb recognition. If an input is found in the
verb database, it is labeled VERB and not sent for further processing. Since storing all
Sanskrit verb forms is not a good option for computational reasons (there are 2000
verb roots and forms generated from it would be in the millions. Besides, there are
innumerable nāmdhātus as well and a regular verb form can be conjugated as
sannata, �ijanata etc as well). The SAS has 450 commonly used verb roots and their
regular forms plus mechanisms to recognize unseen verbs (in the ti�anta module) as
well.

3.2.4 Recognition of subanta

Thus a process of exclusion identifies the nouns in a Sanskrit text. After the
punctuation, avyayas and verbs are identified, the remaining words in the text are
labeled as SUBANTA.

3.3 Analysis of subanta

System does analysis of inflected nouns with the help of two relational databases –
examples and rules. Brief description of these databases follows-

3.3.1 Example database

All complicated forms including those of some pronouns which cannot be easily
analyzed according to rules are stored in the database. For example: AWûqÉç=AxqÉSè+xÉÑ
mÉëjÉqÉÉ LMüuÉcÉlÉ;AWÇû=AxqÉSè+xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ; AÉuÉÉqÉç=AxqÉSè+AÉæ mÉëjÉqÉÉ Ì²uÉcÉlÉ;
AÉuÉÉÇ=AxqÉSè+AÉæ mÉëjÉqÉÉ Ì²uÉcÉlÉ;uÉrÉqÉç=AxqÉSè+eÉxÉç mÉëjÉqÉÉ uÉWÒûuÉcÉlÉ;uÉrÉÇ=AxqÉSè+eÉxÉç mÉëjÉqÉÉ
uÉWÒûuÉcÉlÉ;

8 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

3.3.2 Rule database

The subanta patterns are stored in this database. This database analyzes those nouns
which match a particular pattern from the rule base. For example, UÉqÉ: ,lÉSÏ, UqÉÉ,
mÉÑxiÉMüqÉç etc. First, the system recognizes vibhakti as the end character of nouns. For

example, ‘:’ is found in nominative singular like- UÉqÉ: zrÉÉqÉ: xÉuÉï: pÉUiÉ: LMü: The
system isolates ‘:’ and searches for analysis in the sup rule base. In the case of
nominative and accusative dual, PDK forms will be ending in ‘üÉæ’ . For example, UÉqÉÉæ,
zrÉÉqÉÉæ, xÉuÉÉæï, LMüÉæ. The system isolates ‘üÉæ’ and searches for analysis by matching the
rule database. The sample data is as follows-

üÉ=üÉ+xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ;üÉprÉÉqÉç=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;üÉprÉÉÇ=+prÉÉqÉç iÉ×iÉÏrÉÉ
cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;prÉÉqÉç=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;prÉÉÇ=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï
mÉgcÉqÉÏ Ì²uÉcÉlÉ;üåprÉÈ=+prÉxÉç cÉiÉÑjÉÏï mÉgcÉqÉÏ oÉWÒûuÉcÉlÉ;prÉÈ=+prÉxÉç cÉiÉÑjÉÏï mÉgcÉqÉÏ oÉWÒûuÉcÉlÉ;

4 Gender analyzer

After subanta analyzer one can get information about Sanskrit nouns. But still gender
information is not fully analyzed by subanta analyzer. In Sanskrit, there is gender
agreement between adjectives and noun. Though there is no gender agreement
between verb and the agent like Hindi, but k�danta forms agree with agent in terms of
gender in a sentence. If machine has to understand Sanskrit language then it needs to
understand the gender also like any other grammatical category. In the absence of a
correct gender analysis of Sanskrit NPs, the target language translations may be
wrong.

4.1 Description of the gender analyzer

The gender analyzer gets each sentence as a token. Then it sends the token for pre
processing. After pre processing, it finds the verb and avyayas using database and
excludes them for further processing. If in the text there are multiple NPs with
conjunct or comma, then it gets separated NP chunks separated by conjunct or
comma. After that, the system takes help of subanta analyzer to obtain PDK. After
obtaining PDK, the system takes the help of lexical resources to get gender
information of nouns. If enough information about gender is not found then the
system looks for rules. At the end, it suggests the collocational gender of a sentence
with respect to a target Hindi sentence.

Sanskrit Analysis System (SAS) 9

4.1.1 Rule base for gender analyzer

The present subanta analyzer of Sanskrit analyses the Sanskrit words with
prātipadika with vibhakti markers. Some vibhakti markers help to identify the gender
of a word. For example, the word narān can be analyzed as masculine gender from
the vibhakti marker ān, and the number of the word would be plural. If the word
appears in the input with this particular vibhakti, then the gender recognition of the
word would be easy. The problem with this method is that the particular word has to
arrive in the input with this particular vibhakti. As a consequence of this step, there
would be huge numbers of words whose gender would be unrecognized by the
system.

4.1.2 Rules of Li�gānuśāsana

Gender can be recognized from the last but one syllable of the word. The technical
name of this category is upadhā (penultimate).13

upadhā clause Gender Example Exception

k, �, �, �h,

n, p, bh, ma,

y, r, �,s

if the
word ends in
a

Masculine stabaka,

gha�a,dīpa,

bhanu etc

chibuka,
lalā�a,pāpa,

ratna etc
L if the

word ends in
a

Neuter phala tūla, upala etc

Among these words, if some words are used as proper names then it would follow the
gender of a person if the name is a mythical and famous one, for example ambarī�a.

After this step, the gender of a large number of words would remain unrecognized. To
handle this problem, another rule from Li�gānuśāsana is implemented for gender
analyzer. The rule depends on the last var�a of the word. For example, if the word
ends in � (pit�, bhrāt�), generally the gender of the word would be masculine. But
there are exceptions to this rule, like the words māt�, nanānd� etc in the feminine
gender.

After the application of the Pā�inian rules, there are still a large number of Sanskrit
words whose gender recognition is very difficult. For these kinds of words, the gender
can be recognized from the last syllable of the word apart from the Pā�inian rule. For
example, if the ending syllable is a then the gender of the word would be masculine.
If the ending syllable is ā then generally the gender of that word would be feminine.
But there are exceptions to this rule as viśapā, dārā, hāhā etc.

13 AsÉÉåÅlirÉÉimÉÔuÉï EmÉkÉÉ

10 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

5 K�danta analysis

All the verbal suffixes besides ti� are called k�t. k�t is a technical term of Pā�inian
grammar that covers a vast field, both structurally as well as semantically.14 The
primary nominal derivatives from the verb roots are k�danta. The k�t suffixes are
added to roots or their modified forms, to form nouns, adjectives and indeclinables,
for example k� - kāra, krt�, kara�a, kurvat, kari�yat, cak�vas, k�tvā, kartum. These
are called k�dantas or primary derived nominal bases.15

5.1 K�danta identification and analysis mechanisms

The process of k�danta analysis mechanism is divided into two sections - recognition
and analysis.

5.1.1 K�danta identification mechanism

The k�danta recognition starts by an exclusion process. The verb forms, avyayas and
punctuations are excluded by running POS tagger by checking the verb, avyaya and
pronoun databases and punctuation lists. The nominal bases are obtained by the
subanta analyzer which is a part of the POS tagger. These nominal bases are then
checked in fixed lists by the POS tagger. This may result in some of the subantas
being marked for k�danta. The remaining subantas are sent to the k�danta recognizer
and analyzer system for recognition and analysis using following steps –

• check the k�danta database, annotated corpus and k�danta-tagged Monier

Williams Sanskrit Digital Dictionary (MWSDD).
• the subantas still untagged for k�danta are sent to the rule base for k�danta

checking.
• the rule base applies Pā�inian rule base in reverse for marking k�dantas.
• it is possible that even after these systematic identification procedures, there

may remain an untagged k�danta subanta. This will count as failure of the
system.

14 Sharma, Dipti, Structure and Meaning,1982 Nag Publishers New-Delhi
15 Kale, M.R., A Higher Sanskrit Grammar

Sanskrit Analysis System (SAS) 11

5.1.2 K�danta analysis mechanism

The system is divided into two parts- lexical database and rule-base. Lexical database
of examples has been created for analyzing those forms which would be otherwise
very complex to analyze if passed through the rule base. Lexical database has three
major parts- a lexical k�danta database with complicated k�danta forms and their
lexical information, Monier Williams Sanskrit Digital Dictionary and corpus of the
current Sanskrit prose with k�danta words tagged with k�danta information.

The rule-base is for analyzing more regular forms. It consists of mainly three tables,
namely, upasargavikāra table, dhātuvikāra table and pratyayavikāra table. To restrict
dhātuvikāra and pratyayavikāra from inconsistent combinations, both are bound with
a unique id.

For example, mÉÉPûMüÈ[(mÉPû+huÉÑsÉç/mÉPû+ÍhÉcÉç+huÉÑsÉç)mÉëjÉqÉÉ-LMüuÉcÉlÉ]

6 Ti�anta analysis

Verbs have been of central importance to Sanskrit grammarians. Yāska insisted so
much on them that he propounded that all the nominal words are derived from verb
roots16. Like noun padas, verb padas (ti�anta) have to undergo certain inflectional
process in which various verbal affixes are added to verb roots or dhātus. These
dhatus are encoded with the core meaning of the verb. These can be primitive17 or
derived18. Primitive verb-roots, which are around 2000 in number, have been listed in
a lexicon named dhatupātha. They are divided in 10 groups/classes called ga�as. All
the verb-roots of a group undergo somewhat similar inflectional process. Derived
verb-roots may be derived from primitive verb-roots or from nominal forms. Prefixes
also play an important role as they can change the meaning of a verb root. These roots
then have to undergo various inflectional suffixes that represent different paradigms.
In this process, the base or root also gets changed.

6.1 Process of formation of Sanskrit verb forms

A Sanskrit verb root may take various forms. There are ten lakāras that represent
Tense, Aspect and Mood. Inflectional terminations are 18 in number. These are
divided in two groups – parasmaipada and ātmanepada, each having 9 affixes which
is a combination of 3 persons x 3 numbers. A verb is conjugated in either pada,

16 bhāvapradhānamākhyātam (Yāska, Nirukta)
17 bhuvādayo dhātava
 (P 1/3/1)

18 sanādyanta dhātava� (P 3/1/32)

12 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

though some of the roots are conjugated in both. For each different lakāra, a root is
affixed with these 9 terminations. Again, there are three voices- Active, Passive and
Impersonal. Transitive verbs are used in the Active and Passive voices while
intransitive verbs are conjugated in the Active and Impersonal voices. Addition of one
or more of 22 prefixes (upasargas) to verb roots can result in more variety of forms.
Derivative verb roots, both derived from verb roots as well as nominal words, also
follow the same process to form verb forms. There can be some specific rules and
exceptions in some cases. The following chart gives a rough estimate of possible
verb-forms in Sanskrit19 . This is to suggest that Sanskrit verb forms can not be stored
in the database because the derived verb forms can be potentially innumerable.

2000 verb roots
+ derived bases
(causatives, desideratives, frequentatives, denominatives)

 ↓
 TAM [10 lakāras]
 ↓
 ┌──────────────┐
 parasmai ātmane
 ↓ ↓
 10x9 forms 10x9 forms
 ↓ ↓
 22 upasarga 22 upasarga

The verb roots of different ga�as adapt certain terminations when ti� affixes are
added to them. The ti� affixation also influences the verb root and it undergoes
several morpho-phonemic changes, for example, having gu�a operation on the end
vowel. The verb root can adopt certain operations resulting in the final verb-forms.

bhū + ti(p)

bhū+(ś)a(p) + ti (infixation of characteristic)

bho + a + ti (penultimate vowel gu�ated)

19 Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit morphology,
in proc.of SIMPLE 04, IIT Kharagpur, pp. 79-81.

Sanskrit Analysis System (SAS) 13

bhav a ti (ayādi sandhi)

As shown in the example, when suffix tip is added to the verb root bhū, then bhavati
form is obtained as the final verb form. This can be cited as a common analysis of
most verb forms.

6.2 The Analysis of Sanskrit Verb Forms

The methodology for the analysis of Sanskrit verb form in the present work follows
the analysis of Pā�ini in somewhat reverse direction. Pā�inian analysis identifies
different morphemes in any given pada and presents an analysis where he provides
step-by-step methodology to derive a verb form from a given verb root in certain
paradigms. As illustrated above, Sanskrit verb forms are a blend of multiple
morphemes which contain relevant information. Analytically it can be said that the
first element is the conjugational affix that remains at the end of every verb form.
These affixes have encoded information of pada (though it is determined by root),
lakāra, person and number. Thus termination can serve as the most important thing to
convey about the paradigm information of any verb form. They can be a tool to
identify a verb form in a given text. The terminations, as they are basically
replacements of 18 original ti� affixes in different lakāras, differ among themselves
according to lakāras. However in each lakāra, they are similar for all verb roots of
various groups, leaving some expectation. So ti can be used to identify any verb form
of present tense of parasmaipada. But some terminations can vary among themselves
for a group of ga�as. Then again, the termination may be changed due to
morphophonemic environment, tā affix of lu� lakāra, changing to �ā with roots like
yaj.

Further left, there are various morphemes of the various characteristics and
increments inserted between the verb root and terminations, in the process of their
formation explained above. Bhvādiga�a verb forms in conjugational lakāras, have ‘a’
as a result of śap characteristics; svādi roots have no, nu or nv all of them remaining
morphemes of śnu. Some roots like that of adādi have no such characteristics sign
infixed in them.

At the right end of the verb form, there is modified stem of the verb root. The
modification can be gu�a, v�ddhi or any other. Generally a root adopts a common
stem in all the forms for both padas in conjugational lakāras. So bhav is the stem for
all parasmaipadī forms in the conjugational lakāras. But there are exceptions to it to
that extent that four or five types can be found among nine forms of a single lakāra

pada.

Here the first morpheme the ti� termination is common among all verb forms of a
particular pada-lakāra- puru�a -sa�khyā combination. Second constituent, the
characteristics (existing in the form of its remaining morpheme) and increments
inserted in between may differ, yet being almost the same in a particular group. The

14 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

third constituent, the modified verb-root is particular in the strict sense. In the
analysis, the recognition of the ti� will identify a word as a verb form and find out its
pada-lakāra- puru�a -sa�khyā. The second morpheme can, in many cases, be helpful
to recognize the ga�a of a particular root because the characteristics in a lakāra are
determined by the ga�a that the roots belong to. Thus the core of the analytical
approach is that each ti�anta verb form can be analyzed to form a unique combination
of verbal stem + ti� termination, and both of these constituent parts are stored in
separate tables. When it is to be analyzed, its constituent morphemes are recognized
and identified with the help of pre-stored structured data.

7. POS Tagger

After getting the information about inflected nouns of Sanskrit, it is necessary to
understand the role of each word in a sentence. This process of marking up the words
in a text as corresponding to a particular part of speech, based on both its definition,
as well as its context—i.e., relationship with adjacent and related words in a phrase,
sentence, or paragraph20 is called POS tagging. A typical POS tagger acts as a shallow
parser and is pre- requisite in several NLP related applications such as machine
translation system, information retrieval word sense disambiguation etc. Sanskrit is an
inflectional language and words in a sentence carry information about entities in
terms of stem, endings, gender, case, number and case relation, while verbs denote
activity, function reaction, mode, voice, tense, person, number etc. Extracting and
organizing, i.e. annotating, these information is the first step towards understanding
the language. Words in a language may occur in POS or various grammatical
categories as they are also known. In Sanskrit for example

 1) gacchati can be either a ti�anta or k�danta
 2) rāma
 can either be a nāmapada (abhidhāna) or ti�anta
 3) āyāta
 can either be a k�danta or ti�anta
 4) mā can either be an avyaya or namapada or a sarvanāman etc

7.1 The Sanskrit Tagset

The designed tagset is classified according to the morphological structure of the
categories. There are two kinds of tags in this tagset. Word class main tags and feature
sub-tags. The tag as a whole is a combination of word class main tag with feature sub-

20 http://en.wikipedia.org/wiki/Part-of-speech_tagging

Sanskrit Analysis System (SAS) 15

tags separated by an underscore. All the tags bear Sanskrit names21 with letter-digit
acronymic in Roman script.

The process first involved evolving a stable tagset for Sanskrit text which has 65 word
class tags, 43 feature sub-tags, and 25 punctuation tags and one tag UN to tag
unknown words – a total of 134 tags. A single full tag is a combination of word class
tag and feature sub-tags (indeclinable and punctuation tags do not have sub-tags). The
word class tags are 8 Noun tags, 8 Pronoun tags, 3 Adjective tags, 9 Participle tags, 2
Number tags, 14 Compound tags, 11 indeclinable tags and 10 verb tags. Feature tags
are three gender sub tags (p,s,n); 8x3 = 24 (Nominal)Case and Number tags (1.1
through 8.3); 4 Verb base modifying tags (Nd, Yn, Sn, Ni); 1Verbal Preposition
(UPA); 2 Pada tags (P and A); 3x3 = 9 (Verbal) Person and Number tags (1.1 through
3.3).

7.2 Description POS Tagger

7.2.1 Pre-processing

After getting Unicode (UTF-8) sandhi free Devanagari Sanskrit input (or with
minimal sandhi) as word, sentence or text, the system sends those input for pre
processing. In this step, the system searches for punctuations in the input and tags
them. In addition to tagging the punctuations, this function also removes unwanted
foreign letters or punctuations from the inside of a Devanagari string.

7.2.2 Fixed-List Tagger

After initializing the input, the system goes to check in the fixed tagged lists. This
database stores lists of avyayas, list of verbs and POS list. The POS example base
consists of approximately 1 MB data. For example

AgcÉÌiÉ[P_laTV_1.1]/[KV1_p_7.1]/[KV1_n_7.1];AgcÉiÉÈ[P_laTV_1.2]/[KV1_p_2.

3]/[KV1_p_5.1]/[KV1_p_6.1]/KV1_n_5.1]/[KV1_n_6.1];AgcÉÎliÉ[P_laTV_1.3]/[K

V1_n_1.3]/[KV1_n_2.3];AgeÉÌiÉ[P_laTV_1.1]/[KV1_p_7.1]/[KV1_n_7.1];AgeÉiÉÈ[
P_laTV_1.2]/[KV1_p_2.3]/[KV1_p_5.1]/[KV1_p_6.1]/KV1_n_5.1]/[KV1_n_6.1];

AgeÉÎliÉ[P_laTV_1.3]/[KV1_n_1.3]/[KV1_n_2.3];lÉÉqÉ[N_n_1.1]/[(nAman)N_n_2.

1];mÉëjÉqÉqÉç[N_n_1.1]/[(prathama)N_n_2.1]/[N_p_2.1]/[AVKV];iÉl§ÉqÉç[N_n_1.1]/[(tan

tra)N_n_2.1];rÉxrÉ[SNS_n_6.1]/[(yad)SNS_p_6.1];qÉWûÉlÉç[NVI_p_1.1]/[(maha)N_p

_2.3];ÍxÉÇWûaÉÉåuÉ×wÉrÉÉåÈ[N_p_6.2]/[(siMhagovRuSha)N_p_7.2]/[N_s_6.2]/[(siMhagov

21 Few names are coined in English for the purpose of clarity and to avoid confusion while

marking their notions. The tags having English names are all the compound tags containing
‘C’ for Compound and few punctuation tags.

16 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

RuShA)N_s_7.2];uÉlÉå[N_n_7.1]/[(vana)N_n_1.2]/[(vana)N_n_2.2];iÉiÉç[SNN_n_1.

1]/[(tad)SNN_n_2.1];qÉÌWûsÉÉUÉåmrÉqÉç[N_n_1.1]/[(mahilAropya)N_n_2.1];lÉaÉUqÉç[N_n_1

.1]/[(nagara)N_n_2.1];

If the token is found, it gets tagged with corresponding tag from the lexicon.

7.2.3 subanta analyzer

However, a large number of input tokens are not found in these lists as they may be
marked for subanta. Therefore the next component of subanta analyzer checks
untagged input in the subanta examples. If not found, it starts analyzing the token
from the right end and checks in the lexicon after each appropriate cut. If it is found, it
tags the input. If after all these steps, the input remains untagged, it gets the ‘not
found’ tag. The resultant tagged token is sent back to the main tagger ‘Post’ which
linearizes the results with adding color schemes for ambiguous and untagged tokens.

8 Kāraka analysis

After understanding words in a Sanskrit sentence, it is necessary to understand how
the words are arranged in a sentence, what are the relation between other words and
verbs. In Sanskrit, this relation can be understood while analyzing kāraka relation.
Etymologically kāraka is the name given to the relation between a noun and a verb in
a sentence. It means ‘that which brings about’ or ‘doer’. 22

8.1 Kāraka and vibhakti mapping

Pā�ini discusses the entire gamut of kāraka-vibhakti relations in three sections of
A��ādhyāyī

• kāraka sūtra (P. 1.4.23 – P. 1.4.55) � 33 sūtras
• vibhakti sūtra (P. 2.3.1 - P. 2.3.73) � 73 sūtras
• karma-pravacanīya (P. 1.4.82 – P. 1.4.97) �16 sūtras

Now the problem of implementation of all kāraka rules is that there are rules of
vivak�ā dependent operations. In the example xjÉÉsrÉÉ mÉcÉÌiÉ, xjÉÉsÉÏ should be

22 A detailed description of kāraka and its mapping with vibhakti is given in Jha Girish Nath,

Mishra Sudhir K., ‘Semantic processing in Pā�ini’s kāraka system’ Presented in second
International Sanskrit Computational Linguistics Symposium at Brown University,2008

Sanskrit Analysis System (SAS) 17

Location as it is the AÉkÉÉU (AÉkÉÉUÉåsÍkÉMüUhÉqÉç), but it is करण by rule xÉÉkÉMüiÉqÉÇ MüUhÉqÉç
because the speaker thinks it is the most instrumental (xÉÉkÉMüiÉqÉ (mÉëM×ü¹ EmÉMüÉUMü)) and

therefore prefers Instrumental case. MüqÉïhÉÉ rÉqÉÍpÉmÉëæÌiÉ xÉ xÉqmÉëSÉlÉqÉ prescribes Dative for

the receiver of gift, but vārtika çAÍzÉ¹urÉuÉWûÉUå SÉhÉÈ mÉërÉÉåaÉå cÉiÉÑjrÉïjÉåï iÉ×iÉÏrÉÉ prohibits it if
the gift was intended for deriving some benefit (sexual favor in this case).Vārtikas
extend, limit Pā�inian rules, for example - lÉÏ-uÉ½ÉålÉï (lÉÉrÉrÉÌiÉ uÉÉWûrÉÌiÉ uÉÉ pÉÉUÇ pÉ×irÉålÉ)
allows kara�a if the verb is lÉÏ or uÉW . It thus limits

aÉÌiÉoÉÑÎ®mÉëirÉuÉxÉÉlÉÉjÉïzÉoSMüqÉÉïMüqÉïMüÉhÉÉqÉÍhÉ MüiÉÉï xÉ hÉÉæÌlÉrÉliÉ×MüiÉ×ïMüxrÉ uÉWåûUÌlÉwÉåkÉÈ which allows

karma. Sometimes vārtikas limit themselves ÌlÉrÉliÉ×MüiÉ×ïMüxrÉ uÉWåûUÌlÉwÉåkÉÈ (if the kartā is

‘sārathi’ or any of its synonyms then lÉÏ-uÉ½ÉålÉï does not apply � uÉÉWûrÉÌiÉ UjÉÇ uÉÉWûÉlÉç
xÉÔiÉÈ (karma by Pā�ini’s aÉÌiÉoÉÑÎ®… sūtra). Another problem is how to implement

semantic conditions such as, xuÉÉiÉÇ§rÉ,DÎmxÉiÉ/DÎmxÉiÉiÉqÉç,xÉÉkÉMüiÉqÉ,AÍpÉmÉëæÌiÉ (to be AÍpÉqÉÑZÉ -
approach someone for gift), mÉëÏrÉqÉÉhÉÈ (one who gets pleased - ÂcrÉjÉÉïlÉÉÇ mÉëÏrÉqÉÉhÉÈ) -
WûUrÉå UÉåcÉiÉå pÉÌ£üÈ,kÉëÑuÉ (fixed point) AmÉÉrÉ (path of separation) kÉëÑuÉqÉmÉÉrÉåÅmÉÉSÉlÉqÉç,kÉÉuÉiÉÈ
AµÉÉiÉç mÉiÉÌiÉ (is AµÉÉiÉ an AÉkÉÉU or kÉëÑuÉ ?) ,AÉkÉÉUÉåÅÍkÉMüUhÉqÉ (AÉkÉÉUÈ ÌMüqÉç ?) etc.

A tentative model of kāraka analyzer is given below.

1. VERB ID

2. VERB ANALYSIS

3. NON—VERB ID

4. SUBANTA ANALYSIS

**5. ĀKĀ�K�A CHECK

**6. KĀRAKA RULES

**7. SPECIAL CONDITIONS

8. KĀRAKA ASSIGNMENT

In this model, the starred modules are under implementation. While analyzing the
verb, the system will take the help of ti�anta analysis. For tokenizing the ti�anta , the
system checks every character of the word through reverse module and matches
through verb database for recognizing the ti�anta pada which is used in the sentence.
If it is found, then all information which is relevant in kāraka analysis are provided to
system for further implementation. Otherwise it returns to check again if dhātu is used
with upasarga and after recognizing upasarga, the system removes the upasaga from
the verb, and again checks it for dhātu identification number and the result is sent to
dhātu information database for getting the relevant information of the dhātu. After the
verb analysis, the system checks for non verb words and then it takes help of subanta
analyzer and kāraka assignment is implemented. In between, there are some steps like
ākā�k�ā checking, and special semantic conditions are not implemented yet.

18 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

9 Result analysis and limitations

Currently the modules of the SAS are not integrated. Individual modules can be tested
as http://sanskrit.jnu.ac.in. The limitation of lexical resource may affect some
modules. In sandhi analyzer, if the input is ÌWûqÉÉsÉrÉÈ the output will be ÌWûqÉÉsÉå AÈ
(ArÉÉÌSxÉÎlkÉ LcÉÉåÅrÉuÉÉrÉÉuÉÈ),ÌWûqÉÉsÉÏ AÈ (rÉhÉç xÉÎlkÉ CMüÉå rÉhÉÍcÉ), ÌWûqÉÉÍsÉ AÈ (rÉhÉç xÉÎlkÉ CMüÉå
rÉhÉÍcÉ), ÌWûqÉÉ AsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ), ÌWûqÉ AsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ)
ÌWûqÉ AÉsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ). Here, the system gives multiple answers with
appropriate rules of Pā�ini as it finds all the parts in these results as valid words in
the 200k Sanskrit dictionary. Future enhancements in this module will select the most
common output based on a frequency marling in the dictionary. The subanta analyzer
can not recognize many forms and is being currently updated. In the gender analyzer,
lexical resources may hamper the result. The system cannot identify gender of those
words which are used in different gender in different meaning properly, like the word
mitra. Sometimes the system fails to check proper gender agreement as well. There
are limitations of the K�danta, Ti�anta, POS tagger and Kāraka modules as well
which are being improved currently.

10 Conclusion

The authors in this paper have presented an ongoing work for developing a complete
SAS. Currently, the SAS has some modules partially developed and some under
development. Significant future additions will be the ambiguity resolution modules
like anaphora resolution. After the kāraka checking module, a disambiguation module
is also going to be added in near future, to resolve problems like ‘bhavati ! bhik�ām

dehi’. Here according to the SAS system, bhavati and dehi both get verb tags. But
here bhavati is used as noun and in vocative. If there is proper punctuation like an
exclamation mark after this word then one can say it is used in vocative. If there is no
punctuation mark then the problem can be resolved by counting verbs in the sentence
which in most cases can be only one. These kinds of problems are to be handled in the
disambiguation module. For the testing of the system, 140 files in unicode Devanāgari
have been collected. Those texts are in simple Sanskrit and collected from different
sources mostly samples of current Sanskrit. Though there is no complete statistics of
the results, but one of the tests in subanta with simple Sanskrit gave a 90% accuracy.

The table is given below.

S.No. File Theme Source Words Time(secs)

1 Corpus-1 rājā sagara
 sandeśa
 609 3
2 Corpus-2 samrā�a aśoka
 sandeśa
 916 3.2
3 Corpus-3 eka
 nibandha
 sandeśa
 882 3
4 Corpus-4 cācā neharu
 sandeśa
 332 1
5 Corpus-5 sarasvatī vandanā sandeśa
 241 1

Sanskrit Analysis System (SAS) 19

and a story
6 Corpus-6 ādhunika praśāsana
 sandeśa
 1045 3.5
7 Corpus-7 eka
 va�ika
 sandeśa
 849 2
8 Corpus-8 paśya me rūpā�i sandeśa
 1328 4
9 Corpus-9 Sanskrit sikśā sandeśa
 306 2
10 Corpus-10 sa�ghe śakti
 sandeśa
 4207 6

References

1. Acharya Vamdeva, 1990. ‘Li�ga-Parijnānam’, Shabdatattva Prakāshan Varanasi
2. Agrwal Muktanada, 2007, ‘Computational Identification and Analysis of Sanskrit

Verb Forms of bhvādiga�a,’ submitted for Mphil degree at SCSS, JNU
3. Bhadra Manji, 2007, ‘Computational analysis of Gender in Sanskrit Noun Phrases for

Machine Translation’, submitted for Mphil degree at SCSS, JNU
4. Bharati, Akshar, Vineet Chaitanya & Rajeev Sangal, 1991, A Computational

Grammar for Indian Languages Processing, Indian Linguistics Journal, pp 52, 91-103
5. Bharati, Akshar, Vineet Chaitanya & Rajeev Sangal, 1995, Natural Language

Processing: A Pan Perspective, Prentice-Hall of India, New Delhi.
6. Cardona George, 1967, Pā�ini’s syntactic categories, Journal of Oriental Institute

Baroda 16:201-15
7. Cardona George, 1988, Pā�ini His Work and Tradition vol…I Delhi(MLBD 1988)
8. Cardona George, 2004, Some Questions on Pā�ini’s Derivational System, procs of

Splash, iSTRANS, Tata Macgraw-Hill, New Delhi, pp 3
9. Chandrasekhar R, 2007, ‘ Part of Speech Tagging for Sanskrit’ , submitted for Phd

degree at SCSS, JNU
10. Jurafsky Daniel and James Martin, 2000, Speech and Language Processing, Prentice-

Hall of India, New Delhi.
11. Edgren A.H 1885, On the verbal roots of the Sanskrit language and of the Sanskrit

grammarians, Journal of American Oriental Society 11:1-5
12. Huet, G’erard, 2003, Towards Computational Processing of Sanskrit,

RecentnAdvances in Natural Language Processing, Proceedings of the International
Conference ICON, Mysore, India

13. Jha, Girish N. et al., 2006, Towards a Computational analysis system for
Sanskrit,Proc. of first National symposium on Modeling and Shallow parsing of
Indian Languages at Indian Institute of Technology Bombay, pp 25-34

14. Jha, Girish N, 2003 A Prolog Analyzer/Generator for Sanskrit Noun phrase
Padas,Language in India, volume-3,

15. Jha, Girish N, 2004, Generating nominal inflectional morphology in Sanskrit,
SIMPLE 04, IIT-Kharagpur Lecture Compendium, Shyama Printing Works,
Kharagpur, WB. Page no. 20-23.

16. Jha, Girish N., 1993, Morphology of Sanskrit Case Affixes: A computational
analysis, M.Phil dissertation submitted to J.N.U., New Delhi

17. Jha, Girish N., 2004, The system of P, Language in India, volume4:2,
18. Jha Girish Nath, Misra Sudhir, ‘Semantic processing in Pā�ini’s karaka system’

Presented in second International Sanskrit Computational Linguistics Symposium at
Brown University,2008

20 Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R.Chandrasekhar6, Sudhir K Mishra7, Girish Nath Jha8

19. Joshi, S. D., 1962, Verbs and nouns in Sanskrit, Indian linguistics 32 : 60- 63.
20. Kale, M.R.,1995, A Higher Sanskrit Grammar, MLBD, New-Delhi
21. Kapoor, Kapil, 1985, Semantic Structures and the Verb: a propositional

analysis,Intellectual Publications, New Delhi
22. Kumar Sachin,2007, ‘Sandhi Splitter and Analyzer for Sanskrit (with reference to ac

Sandhi)’, submitted for Mphil degree at SCSS, JNU
23. Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit

morphology, In proc. of SIMPLE 04, IIT Kharagpur, pp.79-81
24. Mishra, Sudhir K & Jha, Girish N, 2004, Sanskrit Karaka Analyzer for Machine

Translation, In SPLASH proc. of iSTRANS, Tata McGraw-Hill, New Delhi, pp. 224-
225.

25. Mitkov Ruslan, The Oxford Handbook of Computational Linguistics,
OxfordUniversity Press.

26. Narayan Mishra, 1996, (ed). Kashika of Pt.Vamana and Jayaditya ,Chaukhamba
Sanskrit sansthan, Varanasi

27. Nooten, B. A. Van, Pā�ini’s replacement technique and the active finite
verb,University of California, Berkeley.

28. Sharma, Rama NATH, 2003, The A�tādhyayi of Pā�ini, Munshiram Manoharlal
Publishers Pvt. Ltd., Delhi.

29. Shastri, Bheemsen, Laghusiddhantakaumudi , Bhaimee Prakashan, 537, Lajapatrai
Market, New Delhi

30. Singh Surjit Kumar, 2008,‘K�danta Recognition and Processing for Sanskrit’,
submitted for Mphil degree at SCSS, JNU

31. Shastri, Swami Dwarikadas, 2000, ‘The Madhaviya Dhatuv�tti by Saya_acarya’, Tara
Book Agency, Varanasi.

32. Sharma, Dipti, 1982 , Structure and Meaning, Nag Publishers New-Delhi
33. Subash & Jha, Girish N., 2005, Morphological analysis of nominal inflections in

Sanskrit, presented at Platinum Jubilee International Conference, L.S.I. at Hyderabad
University, Hyderabad, pp-34.

34. Subash, 2006, Machine recognition and morphological analysis of Subanta-padas,
M.Phil dissertation submitted to J.N.U., New Delhi.

35. Upadhye, P.V., 1927, Dhaturupacandrika, Gopal Narayen & Co, Bombay.
36. Whitney, W.D., 2002, History of Sanskrit Grammar, Sanjay Prakashan, Delhi.

Web References:

• IIIT,Hyderabad,http://www.iiit.net/ltrc/Publications/Techreports/tr010/anu00kbcs.txt
• Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/
• Huet’s site http://sanskrit.inria.fr/
• Prajna system, ASR Melcote, http://www.sanskritacademy.org/Achievements.htm
• Aiba, Verb Analyzer for classical Sanskrit,
• http://wwwasia.human.is.tohoku.ac.jp/demo/vasia/html/
• Desika, TDIL, Govt. of India, http://tdil.mit.gov.in/download/Desika.htm
• RCILTS, JNU, http://rcilts.jnu.ac.in
• Shabdabodha, ASR, Melcote, http://vedavid.org/ASR/#anchor2
• http://en.wikipedia.org/wiki/Part-of-speech_tagging

