
Chapter Two

Mathematical Thought in Vedic India

2.1 THE VEDAS AND MATHEMATICS

As noted in section 1.3, the earliest extant Sanskrit texts are the ancient
religious texts known as the Vedas, which are traditionally grouped into
four sam. hitās or collections. Probably the oldest elements of these col-
lections, based on comparisons of their vocabulary and grammatical and
prosodic forms, are hymns to various deities in some sections of the R. g-veda
or “Praise-Knowledge.” The standard model of ancient Indian historiog-
raphy places their composition sometime in the second millennium BCE.
Somewhat later than these Early Vedic hymns are Middle Vedic invocations
or mantras used in rituals for performing religious sacrifices, recorded in the
Yajur-veda (“Sacrifice-Knowledge”). The other two Vedic collections are the
Sāma-veda (“Chant-Knowledge”) and the Atharva-veda (“Knowledge of the
Atharvan-priest”), containing chants, prayers, hymns, curses, and charms.

This knowledge was shaped into a canonical corpus probably sometime
before the middle of the first millennium BCE. The remaining works iden-
tified as part of śruti or revealed wisdom were composed to interpret and
expound the Vedas. Among these, the Brāhman. a texts chiefly describe and
explain sacrificial ritual. (These texts are not to be confused with the hu-
man Brāhman. as, or “Brahmins,” who were hereditary priests and scholars.)
The compositions called Vedānta, or “end of the Vedas,” comprising the
Āran. yakas and Upanis.ads, contain teachings on philosophical and spiritual
themes.

What do these texts tell us about ancient Indian ideas on mathemati-
cal subjects? In the first place, they reveal that by Early Vedic times a
regularized decimal system of number words to express quantity was well es-
tablished. (Most of these number words evidently date back as far as Proto-
Indo-European, since they have many cognates in other Indo-European lan-
guages.) Some of the most archaic Vedic hymns attest to this system based
on decades and powers of ten, including combined numbers involving both
decades and units:

You, radiant [Agni, the fire-god], are the lord of all [offerings];
you are the distributor of thousands, hundreds, tens [of good
things]. (R. g-veda 2.1.8)
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Come, Indra [king of the gods], with twenty, thirty, forty horses;
come with fifty horses yoked to your chariot, with sixty, seventy,
to drink the [sacred beverage] Soma; come carried by eighty,
ninety, a hundred horses. (R. g-veda 2.18.5–6)

Three thousand three hundred and thirty-nine [literally “three
hundreds, three thousands, thirty and nine”] gods have wor-
shipped Agni . . . (R. g-veda 3.9.9)

Some simple fractional parts such as one-third, using ordinal number forms
as in their English equivalents, also occur in Early or Middle Vedic texts.1

No later than the Middle Vedic period the Indian decimal integers had been
expanded to a remarkable extent with the addition of number words for
much larger powers of ten, up to at least a trillion (1012). The first record
of them occurs among the hymns included in the Yajur-veda’s descriptions
of sacrificial rites. These hymns invoke not only deities but also aspects of
nature and abstract entities, including various sequences of numbers, both
round and compound:

Hail to earth, hail to the atmosphere, hail to the sky, hail to the
sun, hail to the moon, hail to the naks.atras [lunar constellations],
hail to the eastern direction, hail to the southern direction, hail
to the western direction, hail to the northern direction, hail to the
upwards direction, hail to the directions, hail to the intermediate
directions, hail to the half-years, hail to the autumns, hail to the
day-and-nights, hail to the half-months, hail to the months, hail
to the seasons, hail to the year, hail to all. (Yajur-veda 7.1.15)

Hail to one, hail to two, hail to three . . . hail to eighteen, hail
to nineteen [literally “one-less-twenty”], hail to twenty-nine [lit-
erally “nine-twenty”], hail to thirty-nine . . . hail to ninety-nine,
hail to a hundred, hail to two hundred, hail to all. (Yajur-veda
7.2.11)

Hail to a hundred, hail to a thousand, hail to ayuta [ten thou-
sand], hail to niyuta [hundred thousand], hail to prayuta [mil-
lion], hail to arbuda [ten million], hail to nyarbuda [hundred mil-
lion], hail to samudra [billion], hail to madhya [ten billion], hail
to anta [hundred billion], hail to parārdha [trillion], hail to the
dawn, hail to the daybreak . . . hail to the world, hail to all.
(Yajur-veda 7.2.20)

Why did Vedic culture construct such an extensive number system and
acclaim it in sacred texts? The computing requirements of everyday life

1For example, in Yajur-veda 2.4.12.3: “He, Vis.n. u, set himself in three places, a third
on the earth, a third in the atmosphere, a third in the sky.” (All the Yajur-veda cites in
this chapter are from the version known as the Taittir̄ıya-sam. hitā recension of the Kr.s.n. a
Yajurveda. Note that in these quoted passages and all others throughout the book, text
in square brackets represents editorial additions and explanations that are not literally
present in the original.)
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would not have demanded more than the first few decimal orders of magni-
tude, as seen among other ancient civilizations, whose known number words
reach only into the thousands or tens of thousands. Although infinite specu-
lations are possible about the metaphysical or spiritual implications of these
numbers in Vedic thought, there is probably no conclusive solution to the
mystery.2

The cosmic significance of numbers and arithmetic in ritual reflecting con-
cepts of the universe is brought out clearly in another early first-millennium
text, the Śata-patha-brāhman. a or “Brāhman. a of a hundred paths,” an ex-
egetical text explaining the symbolism of sacrificial rituals. The following
passage refers to sacrificial fire-altars made of baked bricks which symbolize
the 720 days and nights of an ideal year. The creator god Prajāpati, repre-
senting this year and the concept of time in general, sought to regain power
over his creation by arranging these 720 bricks in various ways:

Prajāpati, the year, has created all existing things.. . . Having
created all existing things, he felt like one emptied out, and was
afraid of death. He bethought himself, “How can I get these
beings back into my body?”. . . He divided his body into two;
there were three hundred and sixty bricks in the one, and as
many in the other; he did not succeed. He made himself three
bodies.. . . He made himself six bodies of a hundred and twenty
bricks each; he did not succeed. He did not divide sevenfold.
He made himself eight bodies of ninety bricks each.. . . He did
not divide elevenfold.. . . He did not divide either thirteenfold
or fourteenfold.. . . He did not divide seventeenfold. He made
himself eighteen bodies of forty bricks each; he did not succeed.
He did not divide nineteenfold. He made himself twenty bodies
of thirty-six bricks each; he did not succeed. He did not divide
either twenty-onefold, or twenty-twofold, or twenty-threefold. He
made himself twenty-four bodies of thirty bricks each. There he
stopped, at the fifteenth; and because he stopped at the fifteenth
arrangement there are fifteen forms of the waxing, and fifteen
of the waning [moon]. And because he made himself twenty-four
bodies, therefore the year consists of twenty-four half-months.. . .3

(The full sequence of attempted or rejected divisions by all the integers from
2 to 24 is described in the text, although the above excerpt omits some of
them for conciseness.)

The final division of 720 into 24 × 30 is the last possible one that will
give an integer quotient. Even more interesting, mathematically speaking,
than Prajāpati’s ultimate successful division are the divisions that he did

2Some inferences about the mystical meaning of numbers are discussed in [BerA1878],
vol. 2, ch. 5, in [Mal1996], ch. 14, and in [Mur2005].

3Śata-patha-brāhman. a 10.4.2, [Egg1897], pp. 349–351. I have substituted “divide”
as the translation of vi-bhū where Eggeling uses “develop.” See also the discussion in
[Mal1996], ch. 13.
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not attempt, which would have produced fractional numbers of bricks. The
concept of integer divisibility is thus part of this cosmic narrative. Its se-
quence of pairs of factors of 720, with the numbers relatively prime to 720
neglected, somewhat resembles Old Babylonian tables of sexagesimal recip-
rocals or paired factors of the base 60, where 2 is coupled with 30, 3 with
20, and so on, while the relatively prime numbers such as 7 and 11 are
omitted.4 The sexagesimal multiple 720 is also familiar in Old Babylonian
texts, being the standard metrological unit called the “brick-sar.”5 Whether
these similarities are the result of coincidence or hint at some kind of early
transmission remains unclear. Most of the chief characteristic features of
Old Babylonian mathematics—sexagesimal place-value numbers, tables for
multiplication and division, written numeral forms—have no counterpart in
the scanty available evidence for Vedic mathematical ideas.

Late Vedic exegetical texts such as the Upanis.ads, as well as contempo-
rary Buddhist and Jaina philosophy, also offer intriguing possibilities for
speculation about the development of some concepts later incorporated in
mathematics per se. Examples of these include the synonyms śūnya and
kha, meaning “void,” “nullity” (in later mathematical texts “zero”) and
pūrn. a or “fullness.”6 Unfortunately, we have no distinct lines of textual de-
scent from Vedic religious and philosophical compositions on such concepts
to their later embodiment in specifically mathematical works. About all we
can say is that the Vedic texts clearly indicate a long-standing tradition of
decimal numeration and a deep fascination with various concepts of finite
and infinite quantities and their significance in the cosmos.7

2.2 THE ŚULBA-SŪTRAS

Mathematical ideas were explored in more concrete detail in some of the
ancillary works classified as Vedāṅgas, “limbs of the Vedas,” mentioned in
section 1.3—phonetics, grammar, etymology, metrics, astronomy and calen-
drics, and ritual practice. This section examines mathematics in Vedāṅga

4[Hoy2002], pp. 27–30.
5[Rob1999], p. 59.
6See, for example, [Gup2003] and [Mal1996], ch. 3.
7Popular usage of the term “Vedic mathematics” often differs considerably from the

mathematical content actually attested in Vedic texts. Some authors use “Vedic math-
ematics” to mean the entire Sanskrit mathematical tradition in Vedic and post-Vedic
times alike, which of course comprises much more than is directly present in these early
sources. Most commonly, though, the term signifies the Sanskrit mental-calculation al-
gorithms published in 1965 in a book entitled Vedic Mathematics, which the author de-
scribed ([Tir1992], pp. xxxiv–xxxv) as “reconstructed from” the Atharva-veda and which
are very popular nowadays in mathematics pedagogy. These algorithms are not attested
in any known ancient Sanskrit text and are not mentioned in traditional Vedic exegesis.
They constitute an ingenious modern Sanskrit presentation of some mathematical ideas
rather than an ancient textual source. The widespread confusion on this topic has been
addressed in [DanS1993] and [SarS1989], and a thorough scrutiny of the explicitly math-
ematical and numerical references that actually appear in the four Vedic collections is
presented in [Pandi1993].
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texts on ritual practice, which specified the details of performing the vari-
ous ceremonies and sacrifices to the gods. These texts were classified either
as pertaining to śruti and describing major ceremonies, or as pertaining to
smr. ti and explaining the routine customs and observances to be maintained
in individual households. The former type included the regular fire sacrifices
performed at particular times of the year and the month, as well as special
rituals sponsored by high-ranking individuals for particular aims, such as
wealth, military victory, or heaven in the afterlife.

Some of the ritual practice texts explained how the different types or goals
of sacrifices were associated with different sizes and shapes of fire altars,
which were to be constructed from baked bricks of prescribed numbers and
dimensions. The footprints for the altars were laid out on leveled ground
by manipulating cords of various lengths attached to stakes. The manu-
als described the required manipulations in terse, cryptic phrases—usually
prose, although sometimes including verses—called sūtras (literally “string”
or “rule, instruction”). The measuring-cords, called śulba or śulva, gave their
name to this set of texts, the Śulba-sūtras, or “Rules of the cord.”

Many of the altar shapes involved simple symmetrical figures such as
squares and rectangles, triangles, trapezia, rhomboids, and circles. Fre-
quently, one such shape was required to be transformed into a different one
of the same size. Hence, the Śulba-sūtra rules often involve what we would
call area-preserving transformations of plane figures, and thus include the
earliest known Indian versions of certain geometric formulas and constants.

How this ritual geometry became integrated with the process of sacrificial
offerings is unknown. Did its mathematical rules emerge through attempts
to represent cosmic entities physically and spatially in ritual?8 Or conversely,
was existing geometric knowledge consciously incorporated into ritual prac-
tice to symbolize universal truth or to induce a “satori” state of mind in the
participants through perception of spatial relationships? No contemporary
text can decide these questions for us: the concise Śulba-sūtras themselves
are mostly limited to essential definitions and instructions, and the earliest
surviving commentaries on them are many centuries later than the sūtras,
which in turn are doubtless later than the mathematical knowledge contained
in them.

The rest of the historical context of the Śulba-sūtras is also rather vague.
The ritual practice text corpora to which they belong are ascribed to various
ancient sages about whom no other information survives. The best-known
Śulba-sūtras are attributed to authors named Baudhāyana, Mānava, Āpa-
stamba, and Kātyāyana, in approximately chronological order. They are
assigned this order on the basis of the style and grammar of the language of
their texts: those of Baudhāyana and Mānava seem to be roughly contempo-

8This is the hypothesis of, for example, [Sei1978], in which a prehistoric ritual origin for
Eurasian geometry traditions is reconstructed from ideas of the sky as a circle, the earth
as a square, and so on. And [Sta1999] amplifies this thesis for a potential Indo-European
ancestor of both Indian and Greek geometry, based on the ritual associations of both
Śulba-sūtra techniques and the “altar of Delos” legend of the cube duplication problem.
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rary with Middle Vedic Brāhman. a works composed perhaps in 800–500 BCE,
while the Śulba-sūtra of Kātyāyana appears to post-date the great grammat-
ical codification of Sanskrit by Pān. ini in probably the mid-fourth century
BCE. Nothing else is known, and not much can be guessed, about the lives
of these texts’ authors or the circumstances of their composition.9

The Śulba-sūtras, like other manuals on ritual procedure, were intended
for the use of the priestly Brāhman. a families whose hereditary profession
it was to conduct the major sacrificial rituals. But since animal sacrifice
and consequently most of the fire altar rituals were eventually abandoned
in mainstream Indian religion, and since there are few archaeological traces
of ancient fire altars, it is not certain how the prescribed procedures were
typically enacted in practice.10

The Śulba-sūtra texts11 include basic metrology for specifying the dimen-
sions of bricks and altars. Among the standard units are the aṅgula or
digit (said to be equal to fourteen millet grains), the elbow-length or cu-
bit (twenty-four digits), and the “man-height” (from feet to upraised hands,
defined as five cubits).12 As early as the Baudhāyana-śulba-sūtra, methods
are described for creating the right-angled corners of a square or rectangle,
constructing a square with area equal to the sum or difference of two given
squares, and transforming a square with area preservation into a rectangle
(or vice versa), into a trapezium, triangle or rhombus, or into a circle (or
vice versa). In the process, it is explicitly recognized that the square on the
diagonal of a given square contains twice the original area; and more gener-
ally that the squares on the width and the length of any rectangle add up to
the square on its diagonal (the so-called Pythagorean theorem).13 Samples

9See [SenBa1983], pp. 2–5. It is suggested in [Pin1981a], pp. 4–5, that the Āpastamba

and Kātyāyana Śulba-sūtras predate that of Mānava. In [Kak2000a], a much earlier date

for Śulba-sūtra works is inferred by linking them to astrochronological speculations (see
section 2.3).

10An archaeological site containing one large brick altar in the traditional shape of
a bird with outstretched wings, but differing markedly from the numerical specifications
described in the Śulba-sūtra texts, has been dated to the second century BCE; [Pin1981a],
p. 4, n. 19. And a long-lived South Indian tradition of fire altar construction is attested
at the present day in [Sta1983] and in [Nam2002]. But since both of these may have
originated in a form of “Vedic revivalism” in some post-Vedic period rather than in a
continuous ritual praxis going back to the composition of the Śulba-sūtras, we cannot
be sure how far either of them represents the original tradition of fire-altar geometry. In
[SarE1999], pp. 10–11, such a lapse and revival in the abovementioned South Indian ritual
tradition after about the fourth century CE are mentioned.

11For an edition and annotated English translation of the four major Śulba-sūtra works,
see [SenBa1983], on whose edition the following translations are based. Sūtras 1.1–1.2,
1.4–1.13, and 2.1–2.12 of the Baudhāyana-śulba-sūtra are quoted and commented on in
[Plo2007b], pp. 387–393. An earlier study of Śulba-sūtra mathematics is [Dat1993].

12See the various metrological sūtras in Baudhāyana-śulba-sūtra 1.3, [SenBa1983],
pp. 17 (text), 77 (translation); Mānava-śulba-sūtra 4.4–6, [SenBa1983], pp. 60, 128;
Āpastamba-śulba-sūtra 15.4, [SenBa1983], pp. 49, 113; Kātyāyana-śulba-sūtra 5.8–9,
[SenBa1983], pp. 57, 124.

13Baudhāyana-śulba-sūtra 1–2; [SenBa1983], pp. 17–19 (text), 77–80 (translation).

Henceforth the Śulba-sūtra citations will be confined to identifying the text and sūtra

in the edition of [SenBa1983]. The abbreviations used for the text names are listed on
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Figure 2.1 Determining the east-west line with shadows cast by a stake.

of such rules from various Śulba-sūtra texts are cited in the following part
of this section, along with some of their procedures for more elaborate altar
constructions.

The preliminary step is the drawing of a baseline running east and west.
We do not know for sure how this was accomplished in the time of the early
Śulba-sūtra authors, but the later Kātyāyana-śulba-sūtra prescribes using
the shadows of a gnomon or vertical rod set up on a flat surface, as follows:

Fixing a stake on level [ground and] drawing around [it] a circle
with a cord fixed to the stake, one sets two stakes where the
[morning and afternoon] shadow of the stake tip falls [on the
circle]. That [line between the two] is the east-west line. Making
two loops [at the ends] of a doubled cord, fixing the two loops on
the [east and west] stakes, [and] stretching [the cord] southward
in the middle, [fix another] stake there; likewise [stretching it]
northward; that is the north-south line. (KāSS 1.2)

The first part of the procedure is illustrated in figure 2.1, where the base
of the gnomon is at the point O in the center of a circle drawn on the
ground.14 At some time in the morning the gnomon will cast a shadow OM
whose tip falls on the circle at point M , and at some time in the afternoon
the gnomon will cast a shadow OA that likewise touches the circle. The line
between points A and M will run approximately east-west.

Then a cord is attached to stakes at the east and west points, and its
midpoint is pulled southward, creating an isosceles triangle whose base is
the east-west line. Another triangle is made in the same way by stretching
the cord northward. The line connecting the tips of the two triangles is a
perpendicular bisector running north and south. Similar ways of stretching

page xiii.
14Note that the text itself is purely verbal and contains no diagrams. This figure and

all the remaining figures and tables in this chapter are just modern constructs to help
explain the mathematical rules.
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Figure 2.2 Determining the perpendicular sides of a square with a marked cord.

a cord into a triangle are also used for basic determinations of right-angled
figures, as in the following construction of a square:

The length is as much as the [desired] measure; in the western
third of [that length] increased by its half, at the [place] less by a
sixth part [of the third], one makes a mark. Fastening [the ends
of the cord] at the two ends of the east-west line, stretching [the
cord] southward by [holding] the mark, one should make a marker
[at the point that it reaches]. In the same way [one should stretch
the cord] northward; and in the other two directions after revers-
ing [the ends of the cord]. That is the determination. [There
is] shortening or lengthening [of the side to produce the desired
half-side of the square with respect to] that marker. (ĀpSS 1.2)

Here a cord with length equal to the desired side of a square, say s, is

increased to a total length of 3
2
s, and a mark is made at a distance of

5
12

s from one end, as shown in figure 2.2. So when the endpoints are fixed a

distance s apart along the east-west line, pulling the mark downwards creates
a 5-12-13 right triangle to make the sides perpendicular. The same technique
is also used with 3-4-5 right triangles (e.g., in BauSS 1.5, KāSS 1.4). More
general properties of sides and diagonals are stated as well, including versions
of what we now call the Pythagorean theorem and a rule for the length of
the diagonal of a square with a given “measure” or side:

The cord [equal to] the diagonal of an oblong makes [the area]
that both the length and width separately [make]. By know-
ing these [things], the stated construction [is made]. (ĀpSS 1.4;
similarly BauSS 1.12)

The cord [equal to] the diagonal of a [square] quadrilateral makes
twice the area. It is the doubler (dvi-karan. ı̄, “two-maker”) of the
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square. (ĀpSS 1.5; similarly BauSS 1.9, KāSS 2.8)

One should increase the measure by a third [part] and by a fourth
[part] decreased by [its] thirty-fourth [part]; [that is its] diagonal
[literally “together-with-difference”]. (ĀpSS 1.6; similarly BauSS
2.12, KāSS 2.9)

This rule for the length of the diagonal of a square of side s equates it to

s

�

1 + 1
3

+ 1
3 · 4 − 1

3 · 4 · 34

�

, or about s× 1.4142. Interestingly, the Kātyā-

yana-śulba-sūtra version calls this rule approximate or “having a difference”
(from the exact value).

Areas involving multiples of three are also constructed. For example, if a
rectangle is made with width equal to the original square side s and length
equal to its “doubler” or

√
2s, then the diagonal of the rectangle is declared

to be the “tripler,” producing a square of three times the original area:

The measure is the width, the doubler is the length. The cord
[equal to] its hypotenuse is the tripler (tri-karan. ı̄). (ĀpSS 2.2;
similarly BauSS 1.10, KāSS 2.10)

The one-third-maker (tr. t̄ıya-karan. ı̄) is explained by means of
that. [It is] a ninefold division [from the square on the tripler].
(ĀpSS 2.3; similarly BauSS 1.11, KāSS 2.11)

That is, an area one-third of the original area will be one-ninth of the square
on the tripler.

Some typical transformations of one figure into another are the follow-
ing procedures for “combining” or “removing” squares, that is, adding or
subtracting square areas:

The combination of two equal [square] quadrilaterals [was] stated.
[Now] the combination of two [square] quadrilaterals with indi-
vidual [different] measures. Cut off a part of the larger with the
side of the smaller. The cord [equal to] the diagonal of the part
[makes an area which] combines both. That is stated. (ĀpSS
2.4; similarly BauSS 2.1, KāSS 2.13)

Removing a [square] quadrilateral from a [square] quadrilateral:
Cut off a part of the larger, as much as the side of the one to
be removed. Bring the [long] side of the larger [part] diagonally
against the other [long] side. Cut off that [other side] where
it falls. With the cut-off [side is made a square equal to] the
difference. (ĀpSS 2.5; similarly BauSS 2.2, KāSS 3.1)

The first of these sūtras begins by noting that the previously given defini-
tion of the “doubler” or diagonal of a square in essence explained how to
make a square equal to the sum of two identical squares. The methods for
adding and subtracting two squares of different sizes, again relying on the
relations between the sides and hypotenuses of right triangles, are illustrated
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Figure 2.3 Transformations of squares and rectangles.

in figure 2.3a. If ABCD is the larger square and EFGH the smaller, cut off
from ABCD a rectangle KBLD with width equal to the shorter side and
length equal to the longer. Then its diagonal LB will be the side of a square
equal to the sum of the two given squares. But if instead the long side KL is
placed diagonally as the segment LM , then the cut-off side MD will be the
side of a square equal to their difference. This second technique is employed
again in transforming a rectangle into a square:

Wishing [to make] an oblong quadrilateral an equi-quadrilateral:
Cutting off [a square part of the rectangle] with [its] width, [and]
halving the remainder, put [the halves] on two [adjacent] sides
[of the square part]. Fill in the missing [piece] with an extra
[square]. Its removal [has already been] stated. (ĀpSS 2.7; sim-
ilarly BauSS 2.5, KāSS 3.2)

Wishing [to make] an equi-quadrilateral an oblong quadrilateral:
Making the length as much as desired, put whatever is left over
where it fits. (ĀpSS 3.1; similarly BauSS 2.4)

In the first of these two rules, as shown in figure 2.3b, a square with side BD
equal to the width of the given rectangle ABCD is cut off from it, and the
remainder of the rectangle is divided into two halves, one of which (shaded
in the figure) is placed on the adjacent side of the square. This produces
an L shape (also called a gnomon figure—no relation to the vertical stick
gnomon for casting shadows) with an empty corner that will have to be filled
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in with an additional square piece, but the desired square side can then be
found by the square-subtraction procedure described above.

It is not quite clear what the śulba-priest is supposed to do in the converse
case of converting a square into a rectangle. It seems as though a rectangle
of the desired width is to be cut off from the square and the remaining
bricks of the square’s area packed onto the rectangle’s end in an ad hoc
way. Later commentators have suggested a more rigorous interpretation,15

illustrated in figure 2.3c, where the given square ABCD is expanded into
a rectangle AECF of the desired length AE. Then the intersection of the
diagonal AF with the original square side BD defines the side GH of the
required rectangle AEGH with area equal to that of the original square.
However, this does not seem to be what the sūtra actually says, although
it is somewhat similar to a simpler transformation rule (BauSS 2.3, KāSS
3.4) where a square of side s is cut diagonally into three triangles—one half
and two quarters—with the quarters then shifted to form a rectangle with

dimensions s
√

2 × s
√

2
2

.

Transformations between rectilinear and circular shapes are also tackled:

Wishing to make a [square] quadrilateral a circle: Bring [a cord]
from the center to the corner [of the square]. [Then] stretching [it]
toward the side, draw a circle with [radius equal to the half-side]
plus a third of the excess [of the half-diagonal over the half-side].
That is definite[ly] the [radius of the] circle. As much as is added
[to the edges of the circle] is taken out [of the corners of the
square]. (ĀpSS 3.2; similarly BauSS 2.9, KāSS 3.11)

Wishing [to make] a circle a [square] quadrilateral: Making the
diameter fifteen parts, remove two. Thirteen [parts] remain.
That is indefinite[ly, approximately] the [side of the square] quadri-
lateral. (ĀpSS 3.3; similarly BauSS 2.11, KāSS 3.12)

In the first of these sūtras, the radius of a circle with area equal to a given
square is taken to be the half-side of the square, plus one-third of the differ-
ence between the half-side and the half-diagonal; that is, the radius is said

to equal s
2

+
s
√

2/2 − s/2
3

. To convert instead a given circle into a desired

square, one is supposed to use 13
15

of the diameter of the circle as the square’s

side; but this is apparently not considered as accurate as the first formula.
(See the list in table 2.1 at the end of this section for a comparison of the
different values of constants implied by these rules.)

Let us now look at the Śulba-sūtra specifications for some actual altar
arrangements, starting with the prescribed setup of the traditional three
fires used for most sacrificial ceremonies. These are the “householder’s fire,”
which must burn continually under the care of each individual householder,

15See [SenBa1983], pp. 156–158.
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Figure 2.4 Laying out the three sacrificial fires.

the “oblation fire,” and the “southern fire.” They are to be arranged as
follows:

Now in the construction for setting up the [sacrificial] fires, the
distance from the householder’s to the oblation [fire]. It is known:
The Brāhman. a sets [the latter] fire at eight double-paces [where
a pace equals 15 aṅgulas], the prince eleven, the Vaísya twelve,
[east of the householder’s fire]. (BauSS 3.1; similarly ĀpSS 4.1)

Make three successive [contiguous square] quadrilaterals with
[sides equal to] a third of [that] length. In the northwest cor-
ner is the householder’s [fire]. In the south[east] corner of that
same [square] is the [southern] offering fire; in the northeast cor-
ner [of the whole] is the oblation [fire]. (BauSS 3.2; similarly
ĀpSS 4.3)

The three fires form a triangle as shown in figure 2.4, with the householder’s
and oblation fires (H and O respectively) at the western and eastern ends
respectively of the east-west line HO; the length of HO depends on the rank
of the sacrificer (see section 6.1.2 for a description of the ranks alluded to).
The place of the southern fire S (south of the line, as its name suggests) is
to be found by laying out the required three squares in a row south of HO.
Then S is set in the southeast corner of the western square.

Or else, according to the texts, one can approximate this layout by means
of a stretched-cord construction, as follows:

Dividing the distance [between] the householder’s and the obla-
tion [fires] into five or six parts, adding an extra sixth or seventh
part, dividing the whole into three, making a mark at the west-
ern third, fastening [the ends] at the householder’s and oblation
[fires and] stretching [the cord] southward by [holding] the mark,
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one should make a marker. That is the place of the southern fire.
It agrees with smr. ti. (ĀpSS 4.4; similarly BauSS 3.3)

The prescribed cord is also shown in figure 2.4. There it has length 6
5
d,

where d is the distance HO between the first two fires (the user may instead

choose to make the length equal to 7
6
d). The cord is then divided into three

equal parts, and a mark M is made at the eastern end of the western third,

that is, at a distance of 1
3
· 6
5
d = 2

5
d (or alternatively 1

3
· 7
6
d = 7

18
d) from

the western end of the cord.
When the marked cord is attached at the endpoints H and O and stretched

toward the south, the mark M is supposed to fall approximately at S, the

place of the southern fire. Of course, since the marked length 2
5
d is somewhat

shorter than the actual diagonal of the square HS =

√
2

3
d, the triangle

produced by the cord will not be exactly congruent to HOS.
An important related construction is that of the Great Altar or “soma-

sacrifice altar” used in the ceremonies of the sacred ritual beverage soma (see
section 1.2). The Great Altar is to be set up east of the three fires in the
shape of an isosceles trapezium with its base facing west, using prescribed
dimensions:

[The altar] is thirty paces or double-paces on the western side,
thirty-six on the east-west line, twenty-four on the eastern side:
thus the [dimensions] of the soma-altar are known. (ĀpSS 5.1;
similarly BauSS 4.3)

Adding eighteen [units] to a length of thirty-six, [making] a mark
at twelve [units] from the western end [and another] mark at
fifteen, fastening [the ends of the cord] at the ends of the east-west
line, stretching [the cord] south by [holding] the fifteen [mark],
one fixes a stake [there]; in the same way northward; those are
the two [western] corners. Reversing the two ends, stretching
[the cord] by [holding] the same fifteen [mark], one fixes a stake
at the twelve [mark]. In the same way northward; those are the
two [eastern] corners. That is the construction with one cord.
(ĀpSS 5.2)

The Great Altar is to be laid out symmetrically about the east-west line
as shown in figure 2.5 by means of the now familiar stretched-cord method,
utilizing a 15-36-39 right triangle. The height of the trapezium ABCD,
thirty-six units, is paced off along the east-west line, and its base AB of
thirty units is found by stretching the cord twice, to the south and to the
north, to form the right triangles WAE and WBE. The same procedure is
performed on the eastern side, and the twelve-unit lengths ED and EC are
marked off to form the trapezium’s top CD.
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Figure 2.5 Construction of the trapezoidal Great Altar.

The text then describes how to cut and paste this figure into a rectangle—
apparently just a mental construction for determining its area of 972 square
units:

The Great Altar is a thousand [square] paces [or double-paces]
less twenty-eight. One should bring [a line] from the south[east]
corner twelve units toward the south[west] corner. One should
place the cut-off [triangle] upside-down on the other [side]. That
is an oblong quadrilateral. In that way one should consider it
established. (ĀpSS 5.7)

For a special sacrifice to the chief of the gods, Indra, the ritual requires
a smaller altar with identical proportions to this Great Altar but only one-
third of its area. To achieve the desired figure, the linear unit in the Great

Altar construction is replaced by its “one-third-maker” (or

√
3

3
) described

above. Or else the altar dimensions are stated as smaller multiples of the
unit’s “tripler,”

√
3:

One should sacrifice with one-third [the area] of the soma-altar:
this is known [for the area] of the Indra-sacrifice altar. The
one-third-maker of the double-pace is to be used in place of the
double-pace. Or, the widths [eastern and western sides] will be
eight [and] ten [times] the tripler, [and] the east-west [length]
twelve [times]. The Indra-sacrifice altar is three hundred twenty-
four [square] paces [or double-paces]. (ĀpSS 5.8; similarly BauSS
3.12)

What does this ritual geometry add to our understanding of ancient In-
dian mathematical thought? For one thing, we see that at least by the
time of the Baudhāyana-śulba-sūtra, arithmetic (although still not attested
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Table 2.1 Śulba-sūtra constants

Sūtra Rule and modern equivalent Remarks; value

BauSS 2.9,
MāSS 1.8,
ĀpSS 3.2,
KāSS 3.11

Half diagonal of square, minus differ-
ence of half diagonal and half side, plus
one-third that difference, is radius of
circle:

r = s
2

+
s
√

2/2 − s/2
3

π ≈ 3.08831

BauSS 2.10 Seven-eighths diameter of circle, plus
one twenty-ninth of remaining eighth,
minus one sixth of that twenty-ninth di-
minished by its eighth, is side of square:

s = 2r
8

�

7 + 1
29

−
�

1
29 · 6 − 1

29 · 6 · 8

��

π ≈ 3.08833

BauSS 2.11,
ĀpSS 3.3,
KāSS 3.12

Thirteen-fifteenths of diameter of circle
is side of square:

Called “approx-
imate”

s = 2r · 13
15

π ≈ 3.004

BauSS 2.12,
ĀpSS 1.6,
KāSS 2.9

Side of square plus its third plus a
fourth of the third minus one thirty-
fourth of the fourth is the diagonal

KāSS says “ap-
proximate”

s
√

2 = s ·
�

1 + 1
3

+ 1
3 · 4 − 1

3 · 4 · 34

� √
2 ≈ 1.4142

MāSS 11.9–
10

s2 =
3(2r)2

4
So interpreted
in [Hay1990]
π ≈ 3

MāSS 11.15 r = 4
5
·
√

2
2

s So inter-
preted in,
e.g., [Gup2004b]
π ≈ 3.125
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in written form) embraced manipulation of arbitrary fractional parts such
as one thirty-fourth or two fifteenths, sometimes in quite complicated com-
binations. Spatial properties of several rectilinear plane figures were well
understood, including the relationships among their sides, diagonals, and
areas. Properties of the circle were also studied, particularly the challenging
task of transforming it into a square of equal area or vice versa. And it was
recognized that some of these transformation methods were more accurate
than others in terms of preserving area. The transformation rules in fact
corresponded to what we would call different values of irrational constants;
several of them are summarized in table 2.1.

We have to be cautious about inferring any clear line of chronological de-
velopment for any of these formulas, since it is perfectly possible that a later
text could preserve an archaic rule that was omitted from an earlier text.
We are also hampered by the textual isolation of these rules in efforts to
understand how they were interpreted, derived or justified by their users.
Modern scholars have suggested many ingenious ways to reconstruct their
creation and explore their possible implications for other areas of mathe-
matical thought.16 But none of these is explicitly confirmed by the texts
themselves, and there are no known textual traditions directly linking them
to extant later works on geometry, which were composed starting around the
middle of the first millennium CE. Nonetheless, as we will see in our explo-
ration of those works in chapter 5, we frequently seem to hear in the verses of
Classical Sanskrit geometry echoes of the sūtras of the ancient śulba-priests.

2.3 THE VEDAS AND ASTRONOMY

It has long been debated whether the Vedic corpus, in addition to providing
clues about general numeration practices and ritual geometry, also preserves
information about an ancient Indian tradition of mathematical astronomy.17

Since later Sanskrit mathematics is so often closely tied to astronomical
texts, it would not be surprising if we found the two subjects linked in Vedic
times as well. Certainly there are clear references in Vedic texts to some
astronomical and chronometric concepts, as illustrated by one of the Vedic
hymns, quoted in section 2.1, which praises not only the sun, moon and
constellations but also the directions, seasons, and months.

Vedic texts prescribed periodic sacrifices to be performed at particular
times, such as the new and full moon, solstices, and equinoxes. This re-
quired keeping track of the passage of seasons and synodic months (synodic

16For example, see, in addition to the references in table 2.1, [Del2005] and
[SenBa1983], pp. 165–168, for intriguing derivations of the

√
2 value in Baudhāyana-śulba-

sūtra 2.12/Āpastamba-śulba-sūtra 1.6, particularly the geometric reconstruction following
[Dat1993], pp. 192–194; [Neu1969], p. 34, for speculation on a possible relationship of
this value to Old Babylonian mathematics; and [Knu2005] for square root rules and their
possible connections to general quadratic problems.

17In this section the reader may wish to refer to the glossary in section 4.1 for expla-
nations of unfamiliar astronomical terms.


