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In this paper I will present a method for finding the numerical value of square roots that was inspired by the 
Sulbasutra which are Sanskrit texts written by the Vedic Hindu scholars before 600 B.C.. This method 
works for many numbers and will produce values to any desired degree of accuracy and is more efficient (in 
the sense of requiring less calculations for the same accuracy) than the divide-and-average method 
commonly taught today. 

Several Sanskrit texts collectively called the Sulbasutra were written by the Vedic Hindus starting before 
600 B.C. and are thought2 to be compilations of oral wisdom which may go back to 2000 B.C. These texts 
have prescriptions for building fire altars, or Agni. However, contained in the Sulbasutra are sections which 
constitute a geometry textbook detailing the geometry necessary for designing and constructing the altars. 
As far as I have been able to determine these are the oldest geometry (or even mathematics) textbooks in 
existence. It is apparently the oldest applied geometry text. 

It was known in the Sulbasutra (for example, Sutra 52 of Baudhayana's Sulbasutram) that the diagonal of a 
square is the side of another square with two times the area of the first square as we can see in Figure 1. 

Thus, if we consider the side of the original square to be one unit, then the diagonal is the side (or root) of a 
square of area two, or simply the square root of 2, that is . The Sanskrit word for this length is dvi-karani
or, literally, "that which produces 2". 

The Sulbasutra3 contain the following prescription for finding the length of the diagonal of a square: 

Increase the length [of the side] by its third and this third by its own fourth less the thirty-fourth part of that 
fourth. The increased length is a small amount in excess (savi´e¸a)4. 

Thus the above passage from the Sulbasutram gives the approximation: 

. 

I use instead of  indicating that the Vedic Hindus were aware that the length they prescribed is a little too 
long (savi´e¸a). In fact my calculator gives: 

and the Sulbasutram's value expressed in decimals is 

So the question arises — how did the Vedic Hindus obtain such an accurate numerical value? 



Unfortunately, there is nothing that survives which records how they arrived at this savi´e¸a. 

There have been several speculations5 as to how this value was obtained, but no one as far as I can 
determine has noticed that there is a step-by-step method (based on geometric techniques in the 
Sulbasutram) that will not only obtain the approximation: 

 , 

but can also be continued indefinitely to obtain as accurate an approximation as one wishes. 

This method will in one more step obtain: 

 , 

where the only numerical computation needed is 1154 = 2[(34)(17)  1] and, moreover, the method shows 
that the square of this approximation is less than 2 by exactly 

. 

The interested reader can check that this approximation is accurate to eleven decimal places. 

The object of the remainder of this paper is a discussion of this method and related topics from the 
Sulbasutram. 

Bricks and Units of Length.

In the Sulbasutram the agni are described as being constructed of bricks of various sizes. Mentioned often 
are square bricks of side 1 pradesa (span of a hand, about 9 inches) on a side. Each pradesa was equal to 12 
angula (finger width, about 3/4 inch) and one angula was equal to 34 sesame seeds laid together with their 
broadest faces touching6. Thus the diagonal of a pradesa brick had length: 

1 pradesa + 4 angula + 1 angula - 1 sesame thickness. 

I do not believe it is purely by chance that these units come out this nicely. Notice that this length is too 
large by roughly one-thousandth of the thickness of a sesame seed. Presumably there was no need for more 
accuracy in the building of altars! 

Dissecting Rectangles and  A2 + B2 = C2

None of the surviving Sulbasutra tell how they found the savi´e¸a. However, in Baudhayana's Sulbasutram
the description of the savi´e¸a is the content of Sutras 61-62 and in Sutra 52 he gives the constructions 
depicted in Figure 1. Moreover in Sutra 54 he gives a method for constructing geometrically the square 
which has the same area as any given rectangle. If N is any number then a rectangle of sides N and 1 has the 
same area as a square with side equal to the square root of N. Thus Sutra 54 give a construction of the 
square root of N as a length. So let us see if this hints at a method for finding numerical approximations of 
square roots. The first step of Baudhayana's geometric process is:

If you wish to turn a rectangle into a square, take the shorter side of the rectangle for the side of a square, 
divide the remainder into two parts and, inverting, join those two parts to two sides of the square. 

See the Figure 2. This process changes the rectangle into a figure with the same area which is a large square 
with a small square cut out of its corner. 



Figure 2

In Sutra 51 Baudhayana had previously shown how to construct a square which has the same area as the 
difference of two squares. In addition, Sutra 50 describes how to construct a square which is equal to the 
sum of two squares. Sutras 50, 51 and 52 are related directly to Sutra 48 which states: 

The diagonal of a rectangle produces by itself both the areas which the two sides of the rectangle produce 
separately. 

This Sutra 48 is a clear statement of what was later to be called the "Pythagorean Theorem" (Pythagoras 
lived about 500 BC). In addition, Baudhayana lists the following examples of integral sides and diagonal 
for rectangles (what we now call "Pythagorean Triples"): 

(3,4,5), (5,12,13), (7,24,25), (8,15,17), (9,12,15), (12,35,37), (15,36,39) 

which the Sulbasutram used in its various methods for constructing right angles. 

Construction of the Savi´e¸a for the Square Root of Two

If we apply Sutra 54 to the union of two squares each with sides of 1 pradesa we get a square with side 1½
pradesa from which a square of side ½ pradesa had been removed. See the Figure 2. 

Now we can attempt to take a strip from the left and bottom of the large square — the strips are to be just 
thin enough that they will fill in the little removed square. The pieces filling in the little square will have 
length 1/2 and six of these lengths will fit along the bottom and left of the large square. The reader can then 
see that strips of thickness (1/6)(1/2) pradesa (= 1 angula) will (almost) work: 

Figure 3

There is still a little square left out of the upper right corner because the thin strips overlapped in the lower 
left corner. Notice that 

. 



We can get directly to  by considering the following dissection: 

Figure 4

We now have that two square pradesas are equal to a large square minus a small square. The large square 
has side equal to 1 pradesa plus 1/3 of a pradesa plus 1/4 of 1/3 of a pradesa, or 1 pradesa and 5 angulas
and the small square has side of 1 angula. To make this into a single square we may attempt to remove a 
thin strip from the left side and the bottom just thin enough that the strips will fill in the little square. Since 
these two thin strips will have length 1 pradesa and 5 angulas or 17 angulas we may cut each into 17 
rectangular pieces each 1 angula long. If these are stacked up they will fill the little square if the thickness 
of the strips is 1/34 of an angula (or pradesa). Without a microscope we will now see the two 
square pradesas as being equal in area to the square with side pradesa. But with a 
microscope we see that the strips overlap in the lower left corner and thus that there is a tiny square of side 

 still left out. 

Figure 5

Thus 

is still a little in 
excess. We can now 
perform the same 
procedure again by 
removing a very very 
thin strip from the 
left and bottom edges 
and then cutting them 
into  
pradesa lengths in 
order to fill in the left 
out square. If w is 
twice the number of 

  lengths in 

pradesa, then the 
strips we remove 
must have width

pradesa. We can calculate w easily because we already noted that there were 17 segments of 
length   and each of these segments was divided into 34 pieces and then one of 
these pieces was removed. Thus w = 2[34(17)-1] = 1154 and 



with error expressed by 

. 

I write "2·1" instead of "2" to remind us that for Baudhayana (and, in fact, for most mathematicians up until 
near the end of the 19th Century) that  denoted the side (a length) of a square with area 2. 

If we again follow the same procedure of removing a very thin strip from the left and bottom edges and 
cutting them into  length pieces, then the reader can check that the number of such pieces must 
be 

2[1154(1154/2)1] = (1154)2  2 = 1,331,714 

and thus that the next approximation (savi´e¸a) is 

. 

The difference between 2·1 and the square of this savi´e¸a is 

. 

This method will work for any number N which you can first express as the area of the difference of two 
squares, N·1 = A2  B2, where the side A is an integral multiple of the side B. For example, 

. 

I find that the easiest way for me to see that these expressions are valid is to represent them geometrically in 
a way that would also have been natural for Baudhayana. To illustrate: 

Figure 6

Figures 3 and 4 give other examples. The reader should try out this method to see how easy it is to find 
savi´e¸as for the square roots of other numbers, for example, 3, 11, 2¾. 

Fractions in the Sulbasutram

You have probably noticed that all the fractions above are expressed as unit fractions, but this is not always 
the case in the Baudhayana's Sulbasutram. For example, in Sutra 69 he discusses how to find a length which 
is an approximation to the diagonal of a square whose side is the "third part of" 8 prakramas (which equals 



240 angulas). He describes the construction: 

... increase the measure [the 8 prakramas] by its fifth, divide the whole into five parts and make a mark at 
the end of two parts. 

In more modern notation if we let D equal 8 prakramas, then this gives the approximation of the diagonal 
of a square with side (1/3)D as 

. 

This is equivalent to  being approximated by 1.44. 

If you attempt to find the savi´e¸as for other square roots you will find it convenient to use non-unit 
fractions. For example, by starting with this picture: 

Figure 7

you can make slight modifications in the above method to find: 

. 

Comparing with the Divide-and-Average (D&A) Method

Today the most efficient method usually taught to find square roots is called "divide-and-average". It is also 
sometimes called Newton's method. If you wish to find the square root of N then you start with an initial 
approximation a0 and then take as the next approximation the average of a0 and N/a0. In general, if an is 

the nth approximation of the square root of N, then an+1 = ½(an + (N/an)). The interested reader can check 
that if you start with [1+(1/3)+(1/12)] = [17/12] = 1.416666666667 as your first approximation of , then 
the succeeding approximations are numerically the same as those given by Baudhayana's geometric method. 

However, Baudhayana's method uses significantly less computations (in addition, of course, to the drawings 
either on paper or in one's mind). For example, look at the following table which compares the methods for 
the first four approximations. For Baudhayana's method at the n-th stage let kn denote the number of thin 
pieces added into the missing square and let cn denote the correction term that is added . 

D&A - calculator D&A - Fractions Baudhayana's Method
a1 = 1.416666667 17/12 1 + (1/3) + (1/4)(1/3) 

a2 = ½(a1 + (2/a1)) = 

1.414215686

½[(17/12)+ 2(12/17)] = 

(577/408)

k2 = 2[(3·4)+4+1] = 34 

c2 =  (1/34)(1/4)(1/3)

a3 = ½(a2 + (2/a2)) = 

1.414213562

½[(577/408)+2(408/577)] = 

(665857/470832)

k3 = (34)2 = 1154 

c3 = (1/1154)(1/34)(1/4)
(1/3)



Notice that the (10-digit) calculator reaches its maximum accuracy at the third stage. At this stage the 
Baudhayana method obtained more accuracy (it can be checked that it is accurate to 12-digits) and the only 
computation required was (34)2 = 1154 which can easily be accomplished by hand. Baudhayana's 
approximations are numerically identical to those attained in the D&A method using fractions, but again 
with significantly less computations. Of course, Baudhayana's method has this efficiency only if you do not 
change Baudhayana's representation of the approximation into decimals or into standard fractions. At the 
fourth stage the Baudhayana method is accurate to less than 2[(133171422)(1331714)(1154)(34)(4)(3)]1

or roughly 24-digit accuracy with the only calculation needed being (1154)22 = 1331714. 

Notice that in Baudhayana's fourth representation of the savi´e¸a for the square root of 2: 

,

the unit is first divided into 3 parts and then each of these parts into 4 parts and then each of these parts into 
1154 parts and each of these parts into 133174 parts. Notice the similarity of this to standard USA linear 
measure where a mile is divided into 8 furlongs and a furlong into 220 yards and a yard into 3 feet and a 
foot into 12 inches. Other traditional systems of units work similarly except for the metric systems where 
the division is always by 10. Also, some carpenters I know when they have a measurement of  inches are 
likely to work with it as , or 2 inches plus a half inch minus an eighth of that half — this is a 
clearer image to hold onto and work with. From Baudhayana's approximation it is easier to have an image 
of the length of  than it is from the D&A's (886731088897/627013566048). 

Conclusions

Baudhayana's method can not come even close to the D&A method in terms of ease of use with a computer 
and its applicability to finding the square root of any number. However, the Sulbasutra contains many 
powerful techniques, which, in specific situations have a power and efficiency that is missing in more 
general techniques. Numerical computations with the decimal system in either fixed point or floating point 
form has many well-known problems.7 Perhaps we will be able to learn something from the (apparently) 
first applied geometry text in the world and devise computational procedures that combine geometry and 
numerical techniques. 

1 This article grew out of researches which were started during my January, 1990, visit to the 
Sankaracharya Mutt in Konchipuram, Tamilnadu, India, where I was given access to the Mutt's library. I 
thank Sri Chandrasekharendra Sarasvati, the Sankaracharya, and all the people of the Mutt for their 
generous hospitality, inspiration and blessings.

2 See for example, A. Seidenberg, The Ritual Origin of Geometry, Archive for the History of the Exact 
Sciences, 1(1961), pp. 488-527. 

3 Baudhayana Sulbasutram, i. 61-2. Apastamba Sulbasutram, i. 6. Katyayana Sulbasutram, II. 13.

4 This last sentence is translated by some authors as "The increased length is called savi´e¸a". I follow the 
translation of "savi´e¸a" given by B. Datta on pp. 196-202 in The Science of the Sulba, University of 
Calcutta, 1932; see also G. Joseph (The Crest of the Peacock, I.B. Taurus, London, 1991) who translates the 
word as "a special quantity in excess". 

a4 = ½(a3 + (2/a3)) = 

1.414213562

½[(665857/470832)+2(470832/665857)] 

= (886731088897/627013566048)

k4 = (1154)22 = 1331714 

c4 = (1/1331714) c3



5 See Datta Op.cit. for a discussion of several of these, some of which are also discussed in G. Joseph, Op. 
cit.

6 Baudhayana Sulbasutram, i. 3-7. 

7 See, for example, P.R. Turner's "Will the 'Real' Real Arithmetic Please Stand Up?" in Notices of AMS, 
Vol. 34, April 1991, pp. 298-304. 


