Algorithms in Ancient India

Amba Kulkarni

Department of Sanskrit Studies University of Hyderabad

5th February 2018

Algorithm

Algorithm: Step-by-step procedure to accomplish a certain task Origin of the word, attributed to

Muḥammad ibn Mūsā al-Khwārizmī (9th century Persian Mathematician)

Al Khwarizmi wrote 'On the Calculation with Hindu Numerals' around 825 AD $\,$

About the Hindu–Arabic numeral system spread throughout the Middle East and Europe.

It was translated into Latin as "Algoritmi de numero Indorum". Al-Khwārizmī, rendered as (Latin) Algoritmi, led to the term "algorithm".

Characterisation of an algorithm

Knuth (1968, 1973) has given a list of five properties as requirements for an algorithm:

- Finiteness: An algorithm must always terminate after a finite number of steps
- Definiteness: Each step of an algorithm must be precisely defined; the actions to be carried out must be rigorously and unambiguously specified for each case
- Input: quantities which are given to it initially before the algorithm begins. These inputs are taken from specified sets of objects
- Output: quantities which have a specified relation to the inputs
- Effectiveness: all of the operations to be performed in the algorithm must be sufficiently basic that they can in principle be done exactly and in a finite length of time by a man using paper and pencil

Euclid's algorithm

One of the oldest Algorithms: Euclid's Algorithm for computing GCD Euclid's Elements (circa 400 BC)

```
r_{k-2} = r_{k-1} + r_k a = b + r_0 b = r_0 + r_1 r_0 = r_1 + r_2 . . . . r_{n-2} = r_{n-1} + r_n When r_n = 0, r_{n-1} is the GCD of a and b
```

Euclid's algorithm: An Example

```
Find GCD of 21 and 35

35 = 21 + 14

21 = 14 + 7

14 = 7 + 7

7 = 7 + 0

GCD = 7
```

Euclid's algorithm

Better algorithm

Euclid's algorithm: An Example

```
Find GCD of 21 and 35

35 = 1*21 + 14

21 = 1*14 + 7

14 = 2*7 + 0

GCD = 7
```

Euclid's algorithm: An Example

- Finiteness: Algorithm terminates in finite steps
- Definiteness: Each step is precisely defined.
- Input: Two non-negative numbers
- Output: A non-negative number which is GCD of the given input
- Effectiveness: Each step can be effectively done with paper and pencil