
Recursion and Combinatorial Mathematics in

Chandaśāstra∗

Amba Kulkarni
Department of Sanskrit Studies,

University of Hyderabad
Hyderabad, India

apksh@uohyd.ernet.in

January 20, 2017

Abstract

Contribution of Indian Mathematics since Vedic Period has been recog-
nised by the historians. Piṅgal.a (200 BC) in his book on Chandaśāstra, a
text related to the description and analysis of meters in poetic work, de-
scribes algorithms which deal with the Combinatorial Mathematics. These
algorithms essentially deal with the binary number system - counting us-
ing binary numbers, finding the value of a binary number, finding the
value of nCr, evaluating 2n, etc. All these algorithms are tail recursive in
nature. Some of these algorithms also use the concept of stack variables to
stack the intermediate results for later use. Later work by Kedār Bhat.t.a
(around 800 AD), however, has only iterative algorithms for the same
problems. We describe both the recursive as well as iterative algorithms
in this paper and also compare them with the modern works.

1 Introduction

‘Without any purpose, even a fool does not get initiated.1 Thus goes a saying
in Sanskrit. If we look at the rich Sanskrit knowledge base, we find that all
the branches of knowledge that exist in Sanskrit literature were originated in
order to address some problems in day today life. While addressing them,
we find that, there were also remarkable efforts in generalising the results and
findings. For example, about thePān. ini ’s monumental work on as.t.ādhyāȳı (500
BC), Paul Kiparsky says “many of the insights of Pān. ini ’s gramar still remain
to be recaptured, but those that are already understood contribute a major

∗The earlier version of this paper is available at http://arxiv.org arxiv:math/0703658v2
dated 7th March 2008

1prayojanam anuddísya na mando api pravartate|

1

theoretical contribution.” (in the encyclopaedia of Language and Linguistics,
ed Asher, pp 2923).

Mathematics is also no exception to it. Contribution of Indian mathemati-
cians dates back to the Vedic period [1]. The early traces of geometry and
algebra are found in Śulvasūtras of Vedic period where the purpose of this ge-
ometrical and algebraic exercise was to build brick altars of different shapes to
perform Vedic rituals. Fixing Luni-Solar calendar was another important task
which led to the development of calculus in India. The development flourished
in the classical period from Aryabhat.t.a (500 AD) to Bhaskarachārya II (1150
AD) and further in the Kerala school of mathematics from 1350 AD to 1650
AD.

However the discovery of binary number system by Indians escaped the
attention of Western scholars, may be because Chandaśāstra was considered as
mainly a text related to description and analysis of meters in poetic literary
work, totally unrelated to mathematics. B. Van Nooten [2] brought it into
limelight.

Vedas are in poetic form. They are written in different meters (Chandas).
These Chandas have been studied in great detail. Piṅgal.a’s Chandaśāstra forms
a part of Vedānga, essential to understand the Vedas.

Chandaśāstra by Piṅgal.a is the earliest treatise found on the Vedic Sanskrit
meters. Piṅgal.a defines different meters on the basis of a sequence of what are
called laghu and guru (short and long) syllables and their count in the verse. The
description and analysis of sequence of the laghu and guru syllables in a given
verse is the major topic of Piṅgal.a’s work. He has described different sequences
that can be constructed with a given number of syllables and has also named
them. At the end of his book on Chandaśāstra, Piṅgal.a[3] gives rules to list all
possible combinations of laghu and guru (L and G) in a verse with ‘n’ syllables,
rules to find out the laghu-guru combinations corresponding to a given index,
total number of possible combinations of ‘n’ L-G syllables and so on. In short
Piṅgal.a describes the ‘combinatorial mathematics’ of meters in Chandaśāstra.
Later around eighth century AD Kedār Bhat.t.a[4] wrote Vr.ttaratnākara a work
on non-vedic meters. This seems to be independent of Piṅgal.a’s work, in the
sense that it is not a commentary on Piṅgal.a’s work, and the last chapter
gives the rules related to combinatorial mathematics which are totally different
from Piṅgal.a’s approach. In the thirteenth century, Halāyudha in his Mr.ta
sanj̄ıvan̄ı[3] commentary on Piṅgal.a’s work, has again described the Piṅgal.a’s
rules in great detail.

Piṅgal.a’s Chandaśāstra contains 8 chapters. The eighth chapter has 35
sūtras of which the last 16 sūtras from 8.20 to 8.35 deal with the algorithms re-
lated to combinatorial mathematics. Kedār Bhat.t.a’s Vr.ttaratnākara contains 6
chapters, of which the sixth chapter is completely devoted to algorithms related
to combinatorial mathematics.

Few words on the sūtra style of Piṅgal.a are in order. The sūtra style was
prevalent during Piṅgal.a’s period. As.t.ādhyāȳı of Pān. ini is the classic example
of sūtra style. A sūtra is defined as

2

alpāks.aram asandigdham sāravat vísvatomukham |
astobham anavadyam ca sūtram sūtravido viduh. ||

A sūtra should contain minimum number of words (alpāks.aram), it should
be unambiguous (asamdigdham), it should contain essence of the topic which
the sūtra is meant for (sāravat), it should be general or should have universal va-
lidity(vísvatomukham), it should not have any unmeaningful words (astobham)
and finally it should be devoid of any fault (anavadyam).

Sūtras are like mathematical formulae which carried a bundle of information
in few words. They were very easy to memorise. They present a unique way to
communicate algorithms or procedures verbally. The sūtra style was adopted by
Indians in almost every branch of knowledge. For example, Piṅgal.a’s sūtras are
for combinatorics whereas Pan. ini’s sūtras are for language analysis. Another
important feature of sūtra style is use of anuvr. tti. Generally all the sūtras that
deal with a particular aspect are clubbed together. To avoid any duplication
utmost care had been taken to factor out the common words and place them at
the appropriate starting sūtra.

Thus for example, if the following are the expanded sūtras

w1 w2 w3 w4
w1 w5 w6
w5 w7 w8
w5 w9
w9 w10 w11 w12

then the sūtra composer would put them as

w1 w2 w3 w4
w5 w6
w7 w8
w9
w10 w11 w12

factoring out the words that are repeated in the following sūtras.
One would then reconstruct the original forms by borrowing the words from

the earlier sūtras. The context and the expectations provide the clues for bor-
rowing. This process of borrowing or repeating the words from earlier sūtras
is known as anuvr. tti. Piṅgal.a has used the sūtra style and also used anuvr. tti.
Kedār Bhat.t.a’s Vr.ttaratnākara contains sūtras which are more verbose than
that of Piṅgal.a’s, and does not use anuvr. tti.

In what follows, we take up each of the sūtras from Piṅgal.a’s chandaśāstra
and explain its meaning and express it in modern mathematical language. We
also examine the corresponding sūtra from Kedār Bhat.t.a’s Vr.ttaratnākara, and
compare the two algorithms.

2 Algorithms

The algorithms that are described in Piṅgal.a’s and Kedār Bhat.t.a’s work are

3

• Prastārah. : To get all possible combinations (matrix) of n binary digits,

• Nas.t.am: To recover the lost/missing row in the matrix which is equivalent
of getting a binary equivalent of a number,

• ūddis. t.am: To get the row index of a given row in the matrix that is same
as getting the value of a binary number,

• Eka-dvi-ādi-l-g-kriyā: To compute nCr, n being the number of syllables
and r the number of laghus (or gurus),

• Samkhyā: To get the total number of n bit combinations; equivalent to
computation of 2n,

• Adhva-yoga: To compute the total combinations of chanda (meters) rang-
ing from 1 syllable to n syllables that is equivalent to computation of
n∑

i=1

2i.

In addition to these algorithms, later commentators discuss an algorithm to
get the positions of the r laghus in the matrix showing all possible combinations
of n laghu-gurus. The corresponding structure is known as patākā prastāra.

2.1 Prastārah.

We shall first give the Piṅgal.a’s algorithm followed by the Kedār Bhat.t.a’s.

2.1.1 Piṅgal.a’s algorithm for Prastārah.

Prastārah. literally means expansion, spreading etc. From what follows it will be
clear that by prastārah. , Piṅgal.a is talking about the matrix showing all possible
combinations of n laghu-gurus. We know that there are 2n possible combinations
of n digit binary numbers. So when we write all possible combinations, it will
result into a 2n * n matrix.

The sūtras in Piṅgal.a’s Chandaśāstra are as follows:

dvikau glau 8.20
mísrau ca 8.21
pr.thaglā mísrāh. 8.22
vasavastrikāh. 8.23

2.1.2 Explanation

1. dvikau glau 8.20

This sūtra means prastāra of ‘one syllable(aks.ara)’ has 2 possible elements

viz. ‘G or L’. So the 21 * 1 matrix is

4

[
G
L

]
In the boolean(0 -1) notation, if we put 0 for G and 1 for L, we get[

0
1

]
2. misrau ca 8.21

‘To get the prastāra of two syllables, mix the above 1 syllable prastāra
with itself’. So we get ‘G-L’ mixed with ‘G’ followed by ‘G-L’ mixed with
‘L’.

Table 1: Mixed with G

G G 0 0
L G 1 0

Table 2: mixed with L

G L 0 1
L L 1 1

This will result in the 22 * 2 matrix shown in table 3.

Table 3: 2 syllable combinations

G G 0 0
L G 1 0
G L 0 1
L L 1 1

But in boolean notation we represent all possible 2-digit numbers, in as-
cending order of their magnitude, as in table 4.

The Table (4) is obtained by elementary transformation of exchange of
columns from Table (3), or simply put it is just the mirror image of Table
(4). Now the question is, why the ancient Indian notation is as in Table
(3) and not as in (4).

This may be because of the practice of writing from LEFT to RIGHT. The
characters uttered first are written to the left of those which are uttered
later.

5

Table 4: 2 digit Binary numbers

0 0
0 1
1 0
1 1

3. pruthaglā miśrāh. 8.22

“To get the expansion of 3 binary numbers, again mix the G and L sepa-

rately with the prastāra of 2-syllables”. So we get a 23 * 3 matrix as in
table 5.

Table 5: 3 syllable prastāra

G-L-representation GL-01-conversion boolean notation
G G G 0 0 0 0 0 0
L G G 1 0 0 0 0 1
G L G 0 1 0 0 1 0
L L G 1 1 0 0 1 1
G G L 0 0 1 1 0 0
L G L 1 0 1 1 0 1
G L L 0 1 1 1 1 0
L L L 1 1 1 1 1 1

Again note that the modern (boolean notation) and ancient Indian nota-
tions (GL-01-conversion) are mirror images of each other.

4. vasavastrikāh. 8.23

This sūtra simply states that there are 8 (vasavah.) 3s (trikāh.).
Thus the first of the 4 rules gives the terminating (or initial) condition.

Second rule tells how to generate a matrix for 2 bits from that of 1 bit. The
third rule states how to generate combinations for 3 bits, given combinations for
2 bits. Fourth rule describes the size of the matrix of 3 bits, and that’s all. It

is understood that this process (the 3rd rule) is to be repeated again and again
to get matrices of higher order.

2.1.3 Recursive-ness of prastāra

To make it clear, we represent the matrix in step 1 as

A1
2∗1 =

[
0
1

]
.

Then the matrix in step 2 is

6

A2
4∗2 =

0 0
1 0
0 1
1 1

 =

[
A1

2∗1 02∗1
A1

2∗1 12∗1

]
.

where Om∗n is a matrix with all elements equal to 0 and 1m∗n is a matrix with
all elements equal to 1.

Continuing further, the matrix in step 3 is

A2
4∗2 =

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

=

[
A2

4∗204∗1
A2

4∗214∗1

]
.

The generalisation of this leads to

An
2n∗n =

[
An−1

2n−1∗(n−1)02n−1∗1

An−1
2n−1∗(n−1)12n−1∗1

]
We notice that the algorithm for generation of all possible combinations of

n bit binary numbers is thus ‘recursive’.

2.1.4 Kedār Bhat.t.’s algorithm for Prastārah.

Kedār Bhat.t. in his Vr.ttaratnākara has given another algorithm to get the
prastāra for a given number of bits. His algorithm goes like this:

pāde sarvagurau ādyāt laghu nyasya guroh.adhah.|
yathā-upari tathā seśam bhūyah.kuryāt amum vidhim ||
ūne dadyāt gurūn eva yāvat sarve laghuh.bhavet |
prastāra h.aya_m samākhyātah.chandoviciti vedibhih.||

“In the beginning all are gurus(G)(pāde sarvagurau). In the second line,
place a laghu(L) below the first G of the previous line(ādyāt laghu nyasya
guroh. adhah.). Copy the remaining right bits as in the above line(yathā-upari

tathā seśam). Place Gs in all the remaining places to the left (if any) of the 1st

G bit(ūne dadyāt gurūn eva). Repeat this till all of them become laghu(yāvat
sarve laghuh. bhavet). This process is known as prastāra.”

Here is an example, explaining the above algorithm:

7

Table 6: Kedar Bhat.t.a’s algorithm

G G G start with all Gs

L G G place L below 1st G of above line, copy
remaining right bits viz. G G as in the
above line

G L G place L below 1st G of above line, copy
remaining right bit viz. G as in the
above line, and G in the remaining
place to the left of L

L L G place L below 1st G of above line, copy
remaining right bits viz. L G as in the
above line

G G L place L below 1st G of above line and
G in remaining places to the left

L G L place L below 1st G of above line, copy
remaining right bits viz. G L as in the
above line

G L L place L below 1st G of above line, copy
remaining right bit viz. L as in above
line and G in the remaining place to the
left

L L L place L below 1st G of above line, copy
remaining remaining right bits viz. L L
as in the above line and stop the process
since all are Ls.

8

If we compare Piṅgal.a’s method with that of Kedār Bhat.t.a’s, we note that
the first one is a recursive, whereas the second one is an iterative one. Compare
this with the well-known definitions of factorials in modern notation. We can
define factorial in two different ways:

n! = n * (n-1)!

1! = 1

OR

n! = 1*2*3*...*n.

Thus if one uses the first definition to get a factorial of say 4, one needs to
know how to get the factorial of 3; to get the factorial of 3, one in turn should
know how to get factorial of 2, etc.
Similarly according to Piṅgal.a’s algorithm, to write a prastāra for 4 syllables,
one needs to write a prastāra for 3 syllables, and to do so in turn one should
write a prastāra for 2 syllables, and so on.
On the other hand, using the second definition, one can get 4! just by multi-
plying 1,2,3 and 4. One need not go through the whole process of finding other
factorials. Similarly Kedār Bhat.t.a describes an algorithm where one can write
the prastāra for say 4 syllables directly without knowing what the prastāra for
3 syllables is.
The algorithm to obtain prastāra, as given by Piṅgal.a, is similar to the recursive
definition of factorial, whereas the one given by Kedār Bhat.t.a, is similar to the
iterative definition of factorial.

2.2 Nas.t.am

In ancient days, the prastāra (or matrix) used to be written on the sand, and
hence there was possibility of getting a row erased. The next couple of sūtras
(8.24 and 8.25) are to recover the lost (or disappeared or vanished) row (nas.t.a)
from the matrix. If one knows Kedār Bhat.t.a’s algorithm then the lost row can
be recovered easily from the previous or the next one. But Piṅgal.a did not have
an iterative description and hence he has given a separate algorithm to find the
‘lost’ row. In different words, getting a ‘lost’ row is conceptually equivalent to
getting guru-laghu combination (i.e. the binary equivalent) of the row index.

The sūtras are as follows:

l-arddhe (8.24)
sa-eke-ga (8.25)

“In case the given number can be halved (without any remainder), then write
L, else add one and then halve it and write G”. For example, suppose we want
to get the ‘laghu-guru’ combination for the fifth row of the 3-aks.ara matrix. We

9

start with the given row-index i.e. 5. Since it is an odd number, add 1 to it and
write ‘G’. After dividing 5+1(=6) by 2, we get 3. Again this is an odd number,
and hence we add 1 to it, and write ‘G’. After dividing 3+1(=4) by 2 we get 2.
Since it is an even number we write ‘L’. Once we get desired number of bits (in
this case 3), the process ends:

Table 7: Nast.am

5 -> (5+1)/2=3 G
3 -> (3+1)/2=2 G G
2 -> 2/2=1 G G L

So the fifth row in the prastāra (matrix) of 3 bits is G G L. The algorithm
may be written as a recursive function as follows:

Get_Binary(n) =

Print L ; Get_Binary(n / 2), if n is even,

Print G ; Get_Binary(n+1 / 2), if n is odd,

Print G; if n=1. (terminating condition)

Thus this algorithm gives a method to convert a binary equivalent of a given
number.

2.2.1 Difference between Piṅgal.a’s method and Boolean method

Let us compare this conversion with the modern method. The boolean method
is illutrated in table 8.

Table 8: Boolean conversion to binary

5 remainder
5 / 2 = 2 1 ˆ
2 / 2 = 1 0 |
1 / 2 = 0 1 —-> |

Hence the binary equivalent of 5 is 101. If we replace G by 0 and L by 1 in
‘G G L’ we get 0 0 1. We have seen earlier that the numbers in modern and
Indian method are mirror images, so after taking the mirror image of ‘0 0 1’
we get ‘1 0 0’. Thus, by Piṅgal.a’s method we get the equivalent of 5 as ‘1 0
0’ whereas by modern method, we get 5=1012. Why is this difference? This
difference is attributed to the fact that the counting in Piṅgal.a’s method starts
with ‘1’. In other words, 1 is represented as ‘0 0 0’ in Piṅgal.a’s method, and
not as ‘0 0 1’.

10

Thus we notice two major differences between the Piṅgal.a’s method and the
modern representation of binary numbers viz.
in Piṅgal.a’s system,

• as has been initially observed by Nooten2, the numbers are written with
the higher place value digits to the right of lower place value digits, and

• the counting starts with 1.

2.3 ūddis. t.am

The third algorithm is to obtain position of the desired (uddis. t.a) row in a
given matrix, without counting its position from the top, i.e. to get the row
index corresponding to a given combination of G and Ls. Thus this is the
inverse operation of nas.t.am. Both Piṅgal.a as well as Kedār Bhat.t.a have given
algorithms for uddis. t.am.

2.3.1 Piṅgal.a’s algorithm for uddis. t.am

Two sūtras viz. (8.26) and (8.27) from Piṅgal.a’s Chandaśāstra describe this
algorithm. The sūtras are as follows:

pratilomagun. am dvih. -l-ādyam (8.26)
tatāh. -gi-ekaṁ jahyāt (8.27)

We first see the meaning of these sūtras followed by an example. The first
sūtra states that in the reverse order(pratiloma), starting from the 1st laghu(l-
ādyam), multiply(gun. am) by 2(dvih.). The second sūtra states that while doing
so(tatah.) if you come across a guru(gi) syllable then, subtract one (ekaṁ jahyāt)
(after multiplying by 2). Here we also note the use of anuvr. tti. The word dvih. is
not repeated in the following sūtra, but should be borrowed from the previous
sūtra. Since it is not mentioned what the starting number should be, we start
with 1.

We illustrate this with an example. Let the input sequence be ‘G L G’. Table
9 describes the application of the above sutras.

Thus the row ‘G L G’ is in the 3rd position in the prastāra of 3 bits. It
is clear that this set of rules thus gives the row index of a row in the prastāra
matrix.

The algorithm may be written formally as in table 10.

This set of rules further can be extended to get the decimal value of a number
in any base B as shown in table 11.

According to this algorithm, value of the decimal number 789 can be calcu-
lated as shown in the table 12. Thus the position of 789 in the decimal place

value system (where 0 is the 1st number 1 is the 2nd and so on) is 790. Further

11

Table 9: uddist.am

G L G remark

1 (start with 1st L from the right,
starting number 1)

2 (multiply by 2)
2 (continue with the previous re-

sult i.e. 2)
4 (multiply by 2)
3 (subtract 1, since it is guru).

Table 10: algorithm for Base 2

Si = 1 where 1st laghu occurs in the i+1th posi-
tion from right.

Si+1 = 2 * Si if i+1th position has L,

= 2 * Si - 1 if i+1th position has G,

where Si denotes sum till ith digits from the
right.

Table 11: algorithm:for Base B

Si = 1 where 1st non-zero digit occurs in the

i+1th position. (The counting for i starts with
1, and goes from the right digit with highest
place value to the lowest place value)

Si+1 = B * Si if i+1th position has B-1,

= B * Si - D
’
i+1, otherwise,

where D’
i+1 stands for the B-1’s complements

of i+1th digit,
and Si denotes sum of i digits from the right.

12

Table 12: Example: base 10

S0 = 1
S1 = 10 * 1 - 2 (9’s complement of

7)
= 8

S2 = 8 * 10 - 1 (9’s complement of
8)
= 79

S3 = 79 * 10
= 790.

note that S1(=8) gives the value of single digit 7, S2(=79) gives the index of 2
digits 78.

2.3.2 Kedār Bhat.t.a’s algorithm for uddis. t.am

The Kedār Bhat.t.a’s version of uddis. t.am differs from that of Piṅgal.a. Kedār
Bhat.t.a’s version goes like this:

uddis.t.am dvigunān ādyān upari ankān samālikhet |
laghusthā ye tu tatra ankān taih. sa-ekaih. mísritaih. bhavet ||

“To get the row number corresponding to the given laghu guru combination,
starting from the first, write double (of the previous one) on the top of each
laghu-guru. Then all the numbers on top of laghu are added with 1. (Since the
starting number is not mentioned, by default, we start with 1).”

We illustrate this with an example.
Let the row be ‘G L L’.
We start with 1, write it on top of G. Then multiply it by 2, and write 2 on

top of the next L, and similarly (2*2=) 4 on top of the last L.

Table 13: uddisṫam

1 2 4
G L L

Then we add all the numbers which are on top of L viz. 2 + 4. To this we
add 1. So the row index of the given L-G combination is 7.

In boolean mathematical notation, ‘G L L’ stands for 1 1 0 (after mirror
image). This is equivalent to decimal 6. The difference of 1 is attributed to the
fact that row index is counted from 1, as pointed out earlier.

13

2.4 eka-dvi-ādi l-g kriyā

Kedār Bhat.t.a’s work describes explicit rules to get the number of combinations
of 1L, 2L, etc. (1G, 2G, etc.) among all possible combinations of n L-Gs. In
other words, it gives a procedure to calculate nCr . Piṅgal.a’s sūtra is very
cryptic and it is only through Halāyudha’s commentary on it, one can interpret
the sūtraas a meru which resembles the Pascal’s triangle. We first give Kedār
Bhat.t.a’s algorithm followed by Piṅgal.a’s.

2.4.1 Kedār Bhat.t.a’s algorithm

The procedure for eka-dvi-adi-l-g-kriyā in Vr.ttaratnākara is described as follows:

varn. ān vr.tta bhavān sa-ekān auttarārdhayatah. sthitān |
ekādikramatah. ca etān upari-upari niks.ipet ||

upāntyatah. nivartet tyajatan ekaikam ūrdhavatah. |
upari ādyāt guroh. evaṁ eka-dvi-ādi-l-g-kriyā ||

Whatever the given number of syllables is, write those many 1s from the left
to right as well as from top to bottom. Then in the 1st row, add the number in
the top(previous) row to its left occupant, and continue this process leaving the
last number. Continue this process for the remaining rows. The last number
in the 1st column stands for all gurus. The last number in the second column
stands for one laghu, the one in the third column for two laghus, and so on.

We explain this algorithm by an example.
Let the number be 6. Write 6 1s horizontally as well as vertically as below.

Elements are populated rowwise by writing the sum of numbers in immediately
preceeding row and column.

Table 14: Meru aka Pascal’s Triangle

1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15
1 4 10 20
1 5 15
1 6
1

The numbers 1, 6, 15, 20, 15, 6, 1 give number of combinations with all
gurus, one laghu, two laghus, three laghus, four laghus, five laghus, and finally
all laghus.

We see the striking similarity of this expansion with the Pascal’s triangle.
This process describes the method of getting the number of combinations of r
from n viz. nCr. This triangle is termed as meru (literal: hill) in the Indian
literature.

14

2.4.2 Piṅgal.a’s algorithm

Piṅgal.a’s sūtras are

pare pūrn. am (8.34)
pare pūrn. am iti (8.35)

The sutra 8.34 literally means, “complete it using the two far ends pare”.
Only from the Halāyudha’s commentary it becomes clear that this sūtra means:
Start with ‘1’ in a cell. Below this cell draw two cells, and so on. Then fill all
the cells which are at the far ends, in each row, by 1s. This results in figure 15.

Table 15: Meru construction step-1
1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

Next sūtra says, complete a cell using above two cells, again filling the far
end cells. Thus resulting in table 16. Repeating this process we get table 17,
and we see that the repeatition leads to the building of meru, or pascal’s triangle.

Table 16: Meru construction step-2

1
1 1

1 2 1
1 3 3 1

1 4 4 1
1 5 5 1

1 6 6 1
1 7 7 1

15

Table 17: Meru construction step-3

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 15 6 1
1 7 21 21 7 1

2.4.3 Bhaskarācharya’s method of obtaining meru

There are other ways of obtaining this meru described in Indian literature. For
example Bhaskarācharya-II - the twelfth century Indian mathematician - in his

L̄ılāvati[5] gives following procedure for obtaining nth row of the meru.

ekādi-ekottarā aṅkā vyastā bhājyāh. kramasthiteh. |
parah. pūrven. a saṅgun.yastatparastena tena ca ||112 ||

The numbers 1, 2, etc. placed in reverse order be divided by 1, 2, etc. in this
order. The quotient be multiplied by the previous one, the next by previous
one. These shall be the combinations of 1,2,3 ... (from a group of n things.)

Reverse n n-1 n-2 ... 2 1
Direct 1 2 3 ... n-1 n

Quotient n
1

(n−1)
2

(n−2)
3 ... 2

(n−1)
1
n

Product n
1

n(n−1)
1.2

n.(n−1)(n−2)
1.2.3 ... n.(n−1)..3.2

1.2..(n−2).(n−1)
n.(n−1)...2.1
1.2...(n−1).n

These are the combinations of n things taken 1,2,3 ... at a time.

Reverse 6 5 4 3 2 1
Direct 1 2 3 4 5 6
Quotient 6

1
5
2

4
3

3
4

2
5

1
6

Product 6
1

6.5
1.2

6.5.4
1.2.3

6.5.4.3
1.2.3.4

6.5.4.3.2
1.2.3.4.5

6.5.4.3.2.1
1.2.3.4.5.6

C0 = 1
Ai = n - i
Bi = i +1

Ci+1 = Ci * Ai / Bi.

Or, in other words,

16

Table 18: Binary Coefficients

i 6 5 4 3 2 1 0
C 1 6 15 20 15 6 1
B 6 5 4 3 2 1
A 1 2 3 4 5 6

nC0 = 1
nCr+1 = nCr * (n-r)/(r+1).

This is another instance of recursive definition.

2.5 Sankhyā

Sankhyā stands for the number of possible combinations of n bits. Piṅgal.a and
Kedār give an algorithm to calculate 2n, given n. The algorithms differ as in
earlier cases. Kedār Bhat.t.a uses the results of previous operations (uddis. t.am
and eka-dvi-ādi-l-g-kriya), whereas Piṅgal.a describes a totally independent al-
gorithm.

2.5.1 Kedār Bhat.t.a’s algorithm for finding the value of Sankhyā

Kedār Bhat.t. gives the following sūtra in his sixth chapter of the bookVr.ttaratnākara

l-g-kriyānka sandohe bhavet sankhyā vimiśrite |

uddis.t.a-anka samāhārāh. sah. ekah. vā janayed imām ||

This sūtra says, one can get the total combinations in two different ways:
a) by adding the numbers of eka-dvi-ādi-l-g-kriyā, or
b) by adding the numbers at the top in the uddis. t.a kriyā and then adding 1 to
it.

So for example, to get the possible combinations of 6 bits,

• the numbers in the eka-dvi-ādi-l-g-kriyā are 1,6,15,20,15,6,1 (see table 14).
Adding these we get
1 + 6 + 15 + 20 + 15 + 6 + 1 = 64.
Therefore, there are 64 combinations of 6 bits.

• The uddis. t.a numbers in case of 6 bits are
1,2,4,8,16,32
and adding all these and then 1 to it, we get
1+2+4+8+16+32+1 = 64.

17

From this it is obvious that Kedār Bhat.t.a was aware of the following two well-
known formulae.

2n =

n∑
r=0

nCr (Sum of the numbers in eka-dv-ādi-l-g-kriyā)

and

2n =
n−1∑
i=0

2i + 1 (sum of uddis. t.a numbers +1).

2.5.2 Piṅgal.a’s algorithm for finding the value of sankhyā

Piṅgal.a’s description goes like this:

dvih. arddhe (8.28)
rūpe śūnyam (8.29)
dvih. śūnye (8.30)
tāvadardhe tadgun. itam (8.31)

If the number is divisible by 2{arddhe}, divide by 2 and write 2{dvih. }. If
not, subtract 1{rūpe}, and write 0{śūnyam}. If the answer were 0{śūnya},
multiply by 2{dvih. }, and if the answer were 2{arddhe}, multiply {tad gun. itam}
by itself {tāvad}.

So for example, consider 8.

8

4 2 (if even, divide by 2 and write 2)

2 2 (if even, divide by 2 and write 2)

1 2 (if even, divide by 2 and write 2)

0 0 (if odd, subtract 1 and write 0).

Now start with the 2nd column, from bottom to top.

0 1*2 = 2 (if 0, multiply by 2)

2 2^2 = 4 (if 2, multiply by itself)

2 4^2 = 16 (if 2, multiply by itself)

2 16^16 = 256 (if 2, multiply by itself).

This algorithm may be expressed formally as

power2(n) = [power2(n/2)] ^ 2 if n is even,

= power2(n-1/2) * 2, if n is odd,

= 1, if n = 0.

Note that the results after each call of the function are ‘stacked’ and may also
be treated as ‘tokens’ carrying the information for the next action (whether to
multiply by 2 or to square). It still remains unclear to the author which part

18

of the sūtra codes information about ‘stack’. Or, in other words, how does one
know that the operation is to be done in reverse order? There is no information
about this in the sūtras anywhere either explicit or implicit. This algorithm

of calculating nth power of 2 is a recursive algorithm and its complexity is
O(log2n), whereas the complexity of calculating power by normal multiplication
is O(n). Knuth[6] has referred to this algorithm as a ‘binary method’ (Knuth,
pp 399).

2.6 Adhvayoga

Piṅgal.a’s sūtra is

dvih. dvih. -ūnam tat antānām 8.32

This algorithm gives the sum (yoga) of all the chandas (adhva) with number
of syllables less than or equal to n. The sutra literally means to get adhvayoga,
multiply the last one (tat antānām) by 2 (dvih.) and then subtract 2 (dvih. ūnam).
That is

n∑
i=1

2i = 2n * 2 - 2 = 2 n+1 - 2

2.7 Finding the position of all combinations of r guru
(laghu) in a prastāra of n bits

This is an interesting algorithm found only in commentaries on Kedār Bhat.t.a’s
work[4]. The algorithm has been given in Bhaskarācārya’s L̄ılāvati. This algo-
rithm tells us the the positions of combinations involving 1 laghu, 2 laghu, etc.
in the n bit prastāra. For example, in the 2 bit prastāra shown in table (2),
we see that there is only one combination with both Gs, and it occurs in the
1st position. There are 2 combinations of 1G (or 1 L), and they occur at the

2nd and the 3rd positions. Finally there is only one combination of 2 Ls, and
it occurs at the fourth position. The following algorithm describes a way to get
these positions without writing down the prastāra.

2.7.1 Algorithm to get positions of r laghu(guru) in a prastāra of n
laghu-gurus

We will give an algorithm to populate the matrix A such that the jth column
of A will have positions of the rows in prastāra with j laghus. It follows that

the total number of elements in jth column will be nCj .

19

1. Write down 1,2,4,8,...,2n in the 1st row.

A[0,i] = 2i, 0 ≤ i ≤ n.

2. The 2nd column of elements is obtained by the following operation:
A[1,i] = A[0,0] + A[0,i], 1 ≤ i ≤ n, and A[i,j] < 2n.

3. The remaining columns (3rd onwards) are obtained as follows:

For each of the elements A[k-1,j] in the kth column, do the following:

A[k,m] = A[k-1,j] + A[0,i], k ≤ i ≤ n+1,

if A[k,m] does not occur in the so-far-populated matrix, and

A[k,m] < 2n, and

0 ≤ j ≤ nCj, and

0 ≤ m ≤ nCl.

The 1st column gives positions of rows with all gurus;

2nd column gives position of rows with 1 laghu, and remaining gurus;

3rd column gives position of rows with 2 laghu and remaining gurus, and so on.
The last column gives the position of rows with all laghus.

Following example will illustrate the procedure.
Suppose we are interested in the positions of different combinations of laghus
and gurus in the prastāra of 5 bits. We start with the powers of 2 starting from
0 till 5 as the 1st row.

1 2 4 8 16 32.

To get the 2nd column, we add 1 (A[0,0]) to the remaining elements in the

1st row (see table 19).

1 2 4 8 16 32
3 (1 + 2)
5 (1 + 4)
9 (1 + 8)
17 (1 + 16).

20

Thus, the 2nd column gives the positions of rows in the prastāra of 5 bits
with 1 laghu and remaining (4) gurus.

To get the 3rd column, we add 2 (A[1,0]) to the remaining elements(A[0,j];

j > 1) of the 1st row (see table 20).

1 2 4 8 16 32
3 6 (2 + 4)
5 10 (2 + 8)
9 18 (2 + 16)
17 .

We repeat this for other elements in the 2nd column (A[i,1]; i>0) as in Table
21.

1 2 4 8 16 32
3 6 (2 + 4)
5 10 (2 + 8)
9 18 (2 + 16)
17 7 (3 + 4)

11 (3 + 8)
19 (3 + 16)
13 (5 + 8) [5+4=9 al-

ready exists in the
matrix, and hence
ignored]

21 (5+16)
25 (9+16) [9+4, 9+8

are ignored].

The 3rd column gives positions of rows with 2 laghus in the 5 bit expansion.
We repeat this procedure till all the columns are exhausted. The final matrix
will be as in table 22.

1 2 4 8 16 32
3 6 12 24
5 10 20 28
9 18 14 30
17 7 22 31

11 26
19 15
13 23
21 27
25 29

Since this is in the form of patākā(which literally means a flag2), it is also
called as patākā prastāra. Thus the Indian mathematicians have gone one step

2Indian flags used to be triangular in shape

21

ahead of the modern mathematicians and not only gave the algorithms to find
nCr, but also have given an algorithm to find the exact positions of these com-
binations in the matrix of all possible combinations(prastāra) of n G-Ls.

3 Conclusion

The use of mathematical algorithms and of recursion dates back to around 200
B.C.. Piṅgal.a used recursion extensively to describe the algorithms. Further,
the use of stack to store the information of intermediate operations, in Piṅgal.a’s
algorithms is also worth mentioning. All these algorithms use a terminating
condition also, ensuring that the recursion terminates. Recursive algorithms
are easy to conceptualise, and implement mechanically. We notice the use of
method of recursion and also the binomial expansion in the later works on math-
ematics such as brahmasphot.asiddhanta[7] with commentary by pruthudaka on
summing a geometric series, or Bhat.t.otpala’s commentary on bruhatsamhitā etc.
They present a mathematical model corresponding to the algorithm. However,
the iterative algorithms are easy from user’s point of view. They are directly
executable for a given value of inputs, without requirement of any stacking of
variables. Hence the later commentators such as Kedār Bhat.t.a might have used
only iterative algorithms. The sūtra style was prevalent in India, and unlike
modern mathematics, the Indian mathematics was passed from generations to
generations verbally, through sūtras. Sutras being very brief, and compact, were
easy to memorise and also communicate orally. However, it is still unexplored
what features of Natural language like Sanskrit have Indian mathematicians
used for mathematics as opposed to a specially designed language of modern
mathematics that made the Indian mathematicians communicate mathematics
orally effortlessly.

4 Acknowledgment

The material in this paper was evolved while teaching a course on “Glimpses of
Indian Mathematics” to the first year students of the Integrated Masters course
at the University of Hyderabad. The author acknowledges the counsel of her
father A. B. Padmanabha Rao, Subhash Kak, and Gèrard Huet who gave useful
pointers and suggestions.

References

[1] Seidenberg, A., The Origin of Mathematics in Archive for History of Exact
Sciences, 1978

[2] Nooten, B. Van., Binary Numbers in Indian Antiquity, Journal of Indian
Philosophy 21:31-50, 1993.

22

[3] Sharma, Anantkrishna, Pingalāchārya praītam Chandah Śāstram, Parimal
Publications, Delhi, 2001.

[4] Sharma, Kedār Nath, Vr.ttaratnākara, nārāyanī, manimayī
vyākhyādyayopetah. , Chaukhamba Sanskrit Sansthan, Varanasi, 1986.

[5] Jha, Lakhanlal, Līlavati of Srīmadbhāskarachārya, Chaukhamba Vidyabha-
van, Varanasi, 1979.

[6] Knuth, D. E., seminumerical algorithms, The Art of Computer Programming
Vol. 2, 2nd ed.,Addison-Wesley, Reading, MA, 1981.

[7] Coolbrook, H. T., Algebra with Arithmetic Mensuration from the Sanskrit
of Brahmagupta and Bhaskara, Motilal Banarasidas, 1817.

23

