
Pāṇḍitya: Visualizing Sanskrit Intellectual Networks

Tyler Neill
Brooklyn, NY

tyler.g.neill@gmail.com

Abstract

Pāṇḍitya is an interactive web-based visualization tool for mapping and exploring rela-1

tionships between Sanskrit authors and their works. Built on the structured data of the2

Pandit Prosopographical Database of Indic Texts, it offers scholars and students an in-3

tuitive and extensible open-source interface for dynamically investigating commentarial4

networks, which are an essential aspect of Sanskrit intellectual history. Originally devel-5

oped as an offline tool (Pandit Grapher), Pāṇḍitya has been re-imagined as an accessible6

online resource leveraging modern web technologies for everyday scholarly use. Beyond7

visualizing these networks, Pāṇḍitya also links to online Sanskrit e-texts through its sister8

project SETI, and may eventually be extended to illustrate additional phenomena such9

as parallel passages.10

1 Introduction11

1.1 Problem and Solution12

Sanskrit intellectual history is vast and deeply intertextual, making it challenging to gain a holis-13

tic view of relationships between works and authors, even after years of study. Pandit—a digital14

humanities project that curates, organizes, and shares structured data on South Asian literary15

and intellectual history through an interactive, scholar-driven prosopographical database (Bron-16

ner and others, 2024)—provides a strong foundation for addressing this challenge. Until very17

recently (see § 1.3), Pandit’s wiki-like website lacked any intuitive, at-a-glance representation of18

these relationships. Pāṇḍitya fills this gap by layering on an interactive network visualization,19

enabling users to trace scholarly relationships with ease and engage more deeply with the mate-20

rial. By bridging structured data and human comprehension, Pāṇḍitya serves as both a research21

aid and a pedagogical tool, enabling more effective exploration of Sanskrit intellectual history22

while lowering barriers for newcomers.23

1.2 Related Network Visualization Projects24

Interactive visualizations of network data are increasingly common in the humanities, but autho-25

rial and commentarial relationships are rarely complex enough to necessitate such an approach.26

Likewise, network visualizations have not traditionally been used for organizing access to digital27

literary canons. Instead, most digital humanities projects have focused on other domains:28

1. Social networks, often reconstructed through documented correspondence, family ties, or29

professional relationships, mirroring interest in modern social media analysis:30

• Six Degrees of Francis Bacon, which maps early modern Britain’s (1500–1700) social31

networks through textual analysis of primary sources (Warren and others, 2016).32

• Mapping the Republic of Letters, which reconstructs Enlightenment intellectual net-33

works through letter-writing archives (Edelstein and others, 2017).34

for review submission



2. Citation networks in modern academic work (scientometrics):35

• Connected Papers, which positions papers in a 2D similarity space based on citation36

patterns and semantic analysis (Tarnavsky Eitan and others, 2025).37

• VOSviewer (Van Eck and Waltman, 2010) and CitNetExplorer (Van Eck and Walt-38

man, 2014), which analyze large-scale scientific literature through co-citation, biblio-39

graphic coupling, and co-authorship patterns .40

3. Computed intertextuality phenomena, such as parallel passages and topic modeling:41

• Open Knowledge Maps, which organizes academic papers into topic-based clusters42

rather than direct citation networks (Kraker and others, 2025).43

• Paper Machines, an open-source Zotero extension that enables researchers to analyze44

bibliographic metadata and full texts using topic modeling and visualization tools (Jo45

and Johnson-Roberson, 2012).46

• The Viral Texts Project, which maps reprinting networks in 19th-century English-47

language newspapers and magazines (Smith and others, 2015).48

• BuddhaNexus, which traces intertextual connections across Sanskrit, Pali, Tibetan,49

and Chinese using FastText embeddings, with a primary focus on Buddhist scriptures50

(Nehrdich, 2020).51

Perhaps the most closely related project is non-academic in nature. The Oracle of Bacon52

is a playful exploration of movie actor networks based on the “six degrees of Kevin Bacon”53

concept, which posits that any actor in (America-centric) show business can be connected to54

Kevin Bacon within six hops or fewer (Reynolds and Tjaden, 2025). This project directly55

inspired the v1 tool Pandit Grapher, as evidenced by the latter’s use of the phrase “bacon56

hops.” Surprisingly, commercial streaming services, as well as subsidiary navigation platforms57

like IMDb and JustWatch, have yet to adopt similar visualizations for content browsing.58

1.3 Project History59

The first version of the project, Pandit Grapher, required users to install Python, manually60

execute scripts, and export data for visualization in Gephi (Neill, 2021). While potentially61

useful for technically proficient users, this process was inaccessible to most Sanskrit scholars.62

To address this barrier, the second iteration, Pāṇḍitya, was developed as a fully online and63

interactive visualization tool. Built with D3.js for dynamic graph rendering and Flask as a64

backend framework, Pāṇḍitya significantly lowers the technical barrier, making this sort of in-65

teraction with Sanskrit scholarly networks more accessible and engaging. Users can explore66

and customize visualizations in real-time using only a web browser, adjusting parameters and67

filtering connections as needed. This transition from an offline, static workflow to an interac-68

tive web-based tool greatly enhances its potential as a reference and research instrument. At69

the same time, the v1 feature of exporting data for use with offline tools like Gephi will be70

retained—currently only on the backend, but soon also on the front end—as it is particularly71

useful for visualizing large and dense graphs with hundreds or thousands of nodes.72

In late April 2025, the Pandit project independently introduced a graph visualization feature73

on its entity pages, similar in concept to Pāṇḍitya. Notable advantages of the Pandit imple-74

mentation include: (1) broader coverage of entity types with options for targeted filtering; and75

(2) polished interface elements such as a collapsible sidebar, refined zoom controls, and helpful76

tooltip displays. Alongside this official implementation, Pāṇḍitya will continue in its current77

role as an independent, open-source platform well suited to experimentation, offering space for78

rapid prototyping, alternate feature sets, and exploratory visualization work. Mutual acknowl-79

edgment and ongoing collaboration between the two platforms can help ensure continued benefit80

to the broader community.81



1.4 Name Derivation82

The name Pāṇḍitya derives from paṇḍita (“scholar”), which is basis for the Pandit project’s83

own name. Pāṇḍitya’s grammatical status as a vṛddhi derivative (meaning “scholarship”) also84

symbolizes its creative derivation from the predecessor project. The full name, Pāṇḍityatāraka,85

can be taken to mean either “that which helps one cross (to the far shore of) Sanskrit scholarly86

learning” or “a tool for navigating Pandit data.”87

2 Data88

References to files below correspond to the project’s GitHub repository at89

https://github.com/tylergneill/panditya.90

2.1 Source91

Pāṇḍitya is built upon a structured subset of the Pandit database, derived from a snapshot92

taken on December 23, 2024. This source dataset contains 67,529 entities and 163 fields93

(data/2024-12-23-pandit-entities-export.csv).94

2.2 Reduced Entity Model95

The dataset was filtered to focus on works (Content type==Work), their authors (Content96

type==Person), and selected additional information: alternate names (Aka and author Social97

Identifiers), work Discipline, and basic dates (Highest year and Lowest year). Entirely98

omitted were entity types such as Manuscript (of which there are 7,532), manuscript Extract99

(5,911), and modern scholarship Print (35,686), along with their associated attributes. Addi-100

tional fields within the Work and Person types, such as Genre classifications or various inter-101

personal relationships, respectively, were also excluded for now.102

The reduced dataset is modeled with the following simplified Python class structure (see103

data_models.py for the full implementation):104

class Entity:105

def __init__(self, entity_id: str):106

self.id: str = entity_id107

self.type: str108

self.name: str109

self.aka: str110

self.highest_year: Optional[int]111

self.lowest_year: Optional[int]112

113

class Work(Entity):114

def __init__(self, entity_id: str):115

super().__init__(entity_id)116

self.type: str = "work"117

self.author_ids: List[str]118

self.base_text_ids: List[str]119

self.commentary_ids: List[str]120

self.discipline: Optional[str]121

self.author_highest_year: Optional[int]122

self.author_lowest_year: Optional[int]123

124

class Author(Entity):125

def __init__(self, entity_id: str):126

super().__init__(entity_id)127

self.type: str = "author"128

self.social_identifiers: Optional[str]129



self.work_ids: List[str]130

self.disciplines: Optional[str]131

This streamlined approach improves usability while preserving essential scholarly connections.132

Users can still explore finer details through linked Pandit pages as needed.133

2.3 Synthetic Attributes134

Some clarification is needed for how certain of these attributes are newly constructed. Since135

the dataset only specifies a work’s base text (via the field Commentary on (work ID)), its136

commentaries must be inferred by reversing this relation, iterating through all works to associate137

each with its corresponding commentaries. The resulting structure enables traversal of authorial138

and commentarial relationships in any direction, allowing for the construction of subgraphs that139

expand from arbitrary nodes.140

Discipline is initially associated only with works—and even then, only sparsely. Based on141

these, a synthetic disciplines list is generated also for each author, as applicable, including142

counts of associated works per discipline (e.g., Maṇḍana Miśra’s disciplines value is “Mīmāṃsā143

(3), Advaita Vedānta (1), Vyākaraṇa (1)”).144

Dates are tracked for both works and authors. When a work lacks its own date information,145

it may inherit the associated author’s range, labeled accordingly (e.g., author_highest_year).146

In this way, the sparseness of date information for works can be partly overcome.147

2.4 Obtaining and Processing Data148

To support periodic updates to the underlying Pandit database, Pāṇḍitya is equipped with a149

simple Extract-Transform-Load (ETL) pipeline that processes Pandit data. However, the data150

must first be obtained from the Pandit database, which is less straightforward.151

2.4.1 Exporting from Pandit Database152

On the Pandit website’s “Advanced Search” page, a “Download CSV” button allows users to153

download search results. When filtering by entity type via the left sidebar, this feature makes154

it appear possible to export arbitrarily large sets of entities, such as all Persons or all Works.155

However, such large requests do not currently complete on the project’s production server. With156

the support of the Pandit team, work on Pāṇḍitya has so far proceeded on the basis of a full157

export initiated by a team member with access to the internal development server and manually158

transferred to me via Google Drive.159

That said, automating updates via the production server still appears feasible through the160

following approach:161

1. Use the lightweight JSON API by appending the ?_format=json parameter to any node162

URL (e.g., https://panditproject.org/node/89000?_format=json).163

2. Periodically query all relevant entities (Works and Persons) known from prior data, check164

the changed attribute’s timestamps for recent updates, and update records accordingly.165

3. Leverage the sequential nature of numerical identifiers to detect newly published entities.166

Such automation has not yet been implemented at the time of writing.167

2.4.2 Extract168

Out of the original 67,529 rows and 163 columns, only the following were retained:169

• 12,700 rows with Content type “Work”, and 3,797 “Person” rows limited to individuals170

listed as authors of at least one work.171

• 14 columns with a primary focus on authorial and commentarial relationships:172

– ID, Title, Author (person IDs), Authors (person), Commentary on (work ID),173

Commentary on (work), Aka, Social identifiers, Discipline, Highest Year, and174

Lowest Year, which are kept as-is.175



– Attributed author (person ID) and Attributed author (person), which are cur-176

rently merged into Author (person IDs) and Authors (person), respectively.177

– Content type, which is ultimately dropped.178

This filtering is automated with the script utils/extract.py, producing the output179

data/2024-12-23-works-raw.csv.180

2.4.3 Manual Cleaning181

Before transformation, minor manual cleaning was required to remove a few spurious entities.182

Details are documented in data/manual_cleaning.md, and the cleaned dataset is saved as183

data/2024-12-23-works-cleaned.csv.184

2.4.4 Transform185

The next step, implemented in utils/transform.py, converts the cleaned dataset into struc-186

tured Work and Author objects, organizing them into an in-memory lookup table that reflects187

the entity model described in § 2.2.188

2.4.5 Load189

Finally, utils/transform.py saves the processed data in a human-readable and retrieval-190

efficient JSON format (data/2024-12-23-entities.json). This dataset can then be loaded191

by other code components using utils/load.py.192

2.5 Component and Other Network Analysis193

The module utils/analyze.py analyzes and categorizes network components, i.e., communities194

of connected nodes, within the dataset, offering insights into how works and authors interconnect.195

Table 1 summarizes the distribution of components, and full lists of component members are196

available at https://panditya.info/notes/data.197

Component Type Number of Components Total Nodes
Isolated Nodes (single works only) 3,005 3,005
Small Communities (2–4 entities) 1,608 3,605
Medium Communities (5–9 entities) 90 565
Large Communities (10–25 entities) 24 344
Second-Largest Community 1 73
Central Community 1 8,905

Table 1: Summary of network component analysis.

A detailed discussion of these and other connection patterns is beyond the scope of this paper.198

However, the following key observations are noteworthy:199

• The presence of a large central community based solely on accepted commentarial relation-200

ships underscores the fundamental role of commentaries in Sanskrit intellectual history.201

• If additional intertextual phenomena, such as parallel passages, were included, many more202

so-called “isolated” works—especially those written by authors with only one or two extant203

texts—would be found to engage in broader intellectual discourse.204

• This network structure may evolve as further updates to Pandit incorporate new philological205

findings.206

Two additional practical takeaways from this analysis are:207

• Isolated or nearly isolated items are relatively common.208

• Conversely, participation in the central community is also widespread, making the visual-209

ization of subgraphs with 6–7+ hops impractical for many inputs.210



Beyond this component analysis, utils/analyze.py also explores preliminary metrics such211

as centrality, influential nodes, and temporal patterns. These remain proofs of concept for now,212

but future refinements could significantly enhance the tool’s analytical depth.213

3 Web Application214

Pāṇḍitya is built on a modular and scalable web architecture:215

1. A Flask backend using flask_restx with Swagger-based API docs.216

2. A REST API that serves entity metadata and builds graphs on demand.217

3. A D3.js front end that dynamically renders and updates network visualizations in real time.218

4. Version control for both code (GitHub) and containerized deployments (Docker Hub).219

5. Deployment on a cloud server (Digital Ocean).220

3.1 Flask App221

The Flask app serves as the core backend, handling data requests and visualization processing:222

• Loads entity data from the ETL pipeline.223

• Exposes API endpoints (see § 3.2) used by the front end.224

• Serves the main route (/) with HTML form and graph controls.225

• Provides the /view route for external linking to specific graphs.226

• Serves informational pages such as /about, /notes/technical, and so on.227

3.2 Backend REST API228

Key endpoints include:229

• GET /api/entities/<type> – Retrieves works, authors, or all entities.230

• GET /api/entities/labels – Maps ID numbers to human-readable labels.231

• POST /api/graph/subgraph – Generates subgraphs from selected entities and hop counts232

using simple breadth-first traversal, with optional exclusion of specified nodes.233

For users who wish to interact directly with the API, the following is also available:234

• /api/docs – Interactive Swagger docs with example queries.235

3.3 Use of D3.js236

D3.js’s forceSimulation models nodes as solid, mutually repelling objects connected by flexible237

links. Four adjustable forces determine the dynamic layout and can be tuned in-browser:238

• forceCollide – Controls how nodes resist overlapping with local neighbors. Higher values239

increase virtual node size.240

• forceManyBody (.strength) – Controls global node repulsion. Higher values increase re-241

pulsion strength.242

• forceLink (.distance) – Controls the spacing of connected nodes. Higher values increase243

link distance.244

• forceCenter (.strength) – Controls the tendency of nodes to return to the graph’s center.245

Higher values increase centralization.246

D3.js also provides built-in support for dragging and zooming, simplifying interactions. Ad-247

ditionally, it facilitates the implementation of Pāṇḍitya’s node context menus (see §3.7).248

3.4 GitHub Repository and Local Deployment249

For local development, users can follow these steps:250

• Clone the repository from GitHub: https://github.com/tylergneill/panditya.251

• Set up a virtual environment using Python 3.11+.252

• Install dependencies from the provided requirements files: requirements.txt,253

requirements_etl.in, and requirements_offline.in.254

• Start the server using the included Makefile: make run.255



3.5 Versioned Deployment on Digital Ocean256

Deployment is managed using Docker and Digital Ocean.257

• New builds are created for both development and production releases (see GitHub PR258

titles and descriptions for versioning details); each production release is also marked with259

a corresponding Git tag.260

• Images are pushed to Docker Hub and deployed as containers on the Digital Ocean server.261

• Nginx and Gunicorn handle traffic management and load balancing.262

• Daily backups of the Digital Ocean “Droplet” ensure system stability and data integrity.263

The production deployment is accessible at https://panditya.info, running release 2.4.9264

at the time of writing (Neill, 2025).265

3.6 User Input Flow266

Using the web form, users select works and/or authors via auto-complete drop-downs, which use267

IAST and are sorted in Sanskrit alphabetical order. These selections are grounded in Pandit268

data and disambiguated primarily by Pandit ID numbers.269

Users should be aware of transliteration ambiguities. Pāṇḍitya currently relies on the mostly270

precomposed IAST inherited from the Pandit database. As a result, search results may vary271

when entering forms such as “Śaṃkara” (m with underdot), “Śaṁkara” (m with overdot),272

“Śaṅkara” (velar nasal), “Śaṃkara” (decomposed diacritics, i.e., S ́ am ̣ kara), or simply273

“samkara” or “sankara”. The Select2 JavaScript module used for dropdowns generally han-274

dles these variants well, and Pāṇḍitya itself supplements search with auxiliary information such275

as dates and alternate names, producing more verbose, disambiguated entries like “Śaṃkara276

(85218) [710] [Śaṃkarācārya, Śaṅkara ācārya]”. Together, these measures are robust against277

most orthographic variation, with the exception of decomposed diacritics. In the future, support278

for a hub transliteration scheme such as SLP1 may improve consistency and search reliability279

across edge cases. When in doubt, users can consult Pandit’s native search interface to help280

identify the unambiguous ID number.281

Once entities are selected, users then specify a hop count to determine graph expansion.282

Optionally, users can also exclude specific entities from expansion to reduce clutter in highly283

connected subgraphs.284

For programmatic use cases, the /view route supports direct queries using these same inputs285

as URL parameters, e.g., Bhagavadgitābhāṣya, suppressing expansion on Bhagavadgītā and286

Śaṃkara: https://panditya.info/view?works=88637&hops=2&exclude_list=85218,42214.287

3.7 Node Context Menu288

After a graph is displayed, right-clicking a node reveals the following options:289

1. More info – Lists additional fields when available: alternate names (aka), social290

identifiers (for authors), dates, and discipline (for works) or disciplines (for au-291

thors).292

2. View on – Links to Pandit entity pages and relevant online e-text repositories (see § 4).293

3. Recenter – Sets the selected node as the new center and regenerates the graph, expanding294

outward by 1–3 hops.295

4. Exclusions – Collapses the selected node, with future options for full removal and re-296

expansion.297

3.8 Force Controls298

Sliders beneath the graph allow users to adjust each of the four D3.forceSimulation forces299

(see §3.3). Additionally, a “Freeze” toggle temporarily disables all forces, enabling manual300

rearrangement, which can facilitate close inspection and/or screenshots.301



3.9 Screenshots302

Figure 1: Searching for an entity using auto-complete drop-down

Figure 2: Generating basic graph



Figure 3: Adjusting force controls

Figure 4: Opening context menu with right-click (“More info”)



Figure 5: Using context menu to collapse prolific node

Figure 6: New graph with collapsed node



4 The Sanskrit E-Text Inventory (SETI)303

In order to enable hyperlinks from Pāṇḍitya work node context menus to online Sanskrit e-texts,304

a separate but related effort, the Sanskrit E-Text Inventory (SETI), aggregates metadata from305

multiple repositories and aligns it with Pandit identifiers. Currently included repositories are306

GRETIL, Digital Corpus of Sanskrit (DCS), SARIT, The Sanskrit Library (and TITUS), sister307

projects Vātāyana and Pramāṇa NLP, and the Muktabodha collection of digitizations from the308

Kashmir Series of Texts and Studies (KSTS).309

This complementary data layer surfaces throughout Pāṇḍitya: in the ETL pipeline’s trans-310

form step, in the REST API (/api/seti routes), and in the D3 front end. For work nodes311

highlighted in gold, the context menu’s “View on” option reveals available e-text collections,312

which are further differentiated into one to three levels of access, ranging from web read-313

ing platforms to raw GitHub data. Component collections and their contained e-texts can314

also be programmatically queried and compared via /api/seti GET routes: by_collection,315

by_collection/overlap, by_collection/unique, and by_work. In addition, the HTML route316

/seti/by_collection/<collection>/visualize behaves like /view (see § 3.6), returning a317

preloaded graph visualization in the browser—here, for entire collections at once. For exam-318

ple, https://panditya.info/seti/by_collection/SARIT/visualize shows the SARIT col-319

lection. Note, however, that only items present in both the source collection and the Pandit320

database can be visualized in Pāṇḍitya.321

This integration of Pāṇḍitya and SETI constitutes a powerful navigation tool and highlights322

both the breadth of online Sanskrit resources and the structural role of shared identifiers. Further323

details, including a system design diagram, numerical coverage overview, and access to the public324

master spreadsheet, are available at panditya.info/seti and in the accompanying blog post.325

Figure 7: Viewing Dharmakīrti e-texts via SETI and the “View on” context menu option



Figure 8: Visualizing SARIT

5 Conclusion and Future Directions326

With its targeted use of interactive visualization, Pāṇḍitya bridges a tangible gap between327

structured data and human comprehension. It enhances access to the underlying Pandit dataset,328

empowering users to more effectively explore and understand Sanskrit intellectual relationships.329

Its three main use cases at present include:330

1. A gamified reference tool for students and scholars, encouraging deeper engagement with331

Sanskrit works and authors.332

2. A mechanism for improving Pandit data by highlighting inconsistencies and missing con-333

nections, while also fostering greater interest in the project.334

3. An electronic catalog tool for finding and navigating to Sanskrit e-texts online.335

Future expansions may include:336

• Building additional features on top of Pandit data, such as quick search for related works337

by both discipline and date, or visualization of family trees.338

• Feeding insights from SETI back into Pandit in the form of new entities and connections,339

thereby increasing visualization coverage within Pāṇḍitya.340

• Illustrating intertextual network analysis, using weighted edges to represent textual inter-341

actions as computed by projects like BuddhaNexus (Nehrdich, 2020) and Vātāyana (Neill,342

2022), with links to interactive intertextuality reports where available.343

Beyond these enhancements, several known development priorities remain:344

• Strengthening Pandit-Pāṇḍitya integration to streamline data refreshes.345

• Improving navigation with more flexible input methods (e.g., transliteration options) and346

alternative modalities like alphabetical browsing.347

• Implementing error-checking to prevent the creation of overly large subgraphs.348

• Exposing v1 export functionality through the front-end interface.349

With its rapid development cycle and adaptable design, Pāṇḍitya aims to serve as a vital tool350

for the Sanskrit scholarly community. It complements the Pandit project from which it derives,351

opening new paths for engaging with the vast intellectual heritage of the Sanskrit tradition.352



Acknowledgments353

Pāṇḍitya gratefully acknowledges Pandit as its source and follows it in adopting the Cre-354

ative Commons BY-NC-SA 4.0 license, viewable at https://creativecommons.org/licenses/355

by-nc-sa/4.0/deed.en.356

References357

Yigal Bronner et al. 2024. Pandit Prosopographical Database of Indic Texts. Available at https:358
//www.panditproject.org/. Accessed: 2025-04-30.359

Dan Edelstein et al. 2017. Historical Research in a Digital Age: Reflections from the Mapping the360
Republic of Letters Project. The American Historical Review, 122(2):400–424, April. Published: 30361
March 2017.362

Guldi Jo and Chris Johnson-Roberson. 2012. Paper Machines. Available at http://papermachines.363
org/. Accessed: 2025-01-31.364

Peter Kraker et al. 2025. Open Knowledge Maps. Available at https://openknowledgemaps.org/.365
Accessed: 2025-01-31.366

Sebastian Nehrdich. 2020. A Method for the Calculation of Parallel Passages for Buddhist Chinese367
Sources Based on Million-scale Nearest Neighbor Search. Journal of the Japanese Association for368
Digital Humanities, 5(2):132–153.369

Tyler G. Neill. 2021. Pandit Grapher. https://doi.org/10.5281/zenodo.14768846.370

Tyler G. Neill. 2022. Intertextual Readings of the Nyāyabhūṣaṇa on Buddhist Anti-Realism. Disser-371
tation, Universität Leipzig, December. Available at https://nbn-resolving.org/urn:nbn:de:bsz:372
15-qucosa2-826296.373

Tyler G. Neill. 2025. Pāṇḍitya. https://doi.org/10.5281/zenodo.15307376.374

Patrick Reynolds and Brett Tjaden. 2025. The Oracle of Bacon. Available at https://oracleofbacon.375
org/. Accessed: 2025-01-31.376

David A. Smith et al. 2015. Computational Methods for Uncovering Reprinted Texts in Antebellum377
Newspapers. American Literary History, 27(3):417–445.378

Alex Tarnavsky Eitan et al. 2025. Connected Papers. Available at https://www.connectedpapers.379
com/. Accessed: 2025-01-31.380

N. J. Van Eck and L. Waltman. 2010. Software Survey: VOSviewer, a Computer Program for Bibliometric381
Mapping. Scientometrics, 84(2):523–538.382

N. J. Van Eck and L. Waltman. 2014. Citnetexplorer: A New Software Tool for Analyzing and Visualizing383
Citation Networks. Journal of Informetrics, 8(4):802–823.384

Chris Warren et al. 2016. Six Degrees of Francis Bacon: A Statistical Method for Reconstructing385
Large Historical Social Networks. Digital Humanities Quarterly, 10(3). Available at http://www.386
sixdegreesoffrancisbacon.com/. Accessed: 2025-01-31.387


