
Compound Type Identification in Sanskrit

Sriram Krishnan1, Pavankumar Satuluri2, Amruta Barbadikar1,
T S Prasanna Venkatesh3 and Amba Kulkarni1

1 Department of Sanskrit Studies, University of Hyderabad
2 IIT Roorkie 3 Vivekananda College, University of Madras

sriramk8@gmail.com, apksh.uoh@nic.in

Abstract

Compounds are formed based on the principle of sāmarthya (semantic compatibility to
compose components). Sanskrit compounds are binary compositions which can be com-
posed further to form a nested constituency of compound structure. Analysing a com-
pound requires us to find the correct structure as well the compound types. Compound
analysis has long been approached in two stages: constituency analysis and compound
type identification. In this work, we propose a methodology to analyse the compounds
by first identifying the compound types based on morphological, syntactic and semantic
clues from Aṣṭādhyāyī. We implement it within the dependency parser framework of
Saṃsādhanī, where the types are identified first and then the constituency structure is
established using a constraint solver.

1 Introduction

The following footnote without marker is needed for the camera-ready version of the paper.
One of the most distinguishing features of Sanskrit is its profound use of compounds (samāsa),

which allows concise expression of complex ideas. Compounds are formed by combining two
or more words into a single lexical unit, often omitting case markers and other grammatical
indicators, thus creating a compact structure to convey meaning. These are categorized into
four major types on the basis of the semantic relationships between their components. The
description of these semantic relations is found in Aṣṭādhyāyī, the seminal grammatical text
of Sanskrit. The four major types of compounds are Avyayībhāva, Tatpuruṣa, Bahuvrīhi and
Dvandva. These compound types have further sub-types defined based on both the syntactic
and semantic nature of their components. In total, 59 sub-types of these four major types have
been observed in Kumar (2012).

Aṣṭādhyāyī meticulously codifies the process of compound generation, providing precise rules
for their semantic classification and syntactic construction. The semantic and syntactic com-
patibility between the components of a compound, referred to as ‘Sāmarthya’, ensures that the
words forming a compound are meaningfully connected and contribute to a unified sense. The
category of the compound-word thus formed can be determined based on its meaning and the
grammatical rules that specify the syntactic arrangement of the component words, as well as
the case, gender, and number of the final compound. The procedure for generating compounds
is clearly outlined, ensuring uniformity in their formation.

When it comes to the analysis of a compound word, there are several challenges due to the
inherent complexity of their structure. The first problem we face in analyzing a compound is
the segmentation. The compound in Sanskrit is always written as a single word without any
space or hyphen between its constituents. Further, the close proximities of the phonemes of
two consecutive components also lead to phonological changes in them introducing ambiguities
during splitting, thereby worsening the situation further for analysis.



The second problem is the ambiguity at the constituency level when the number of components
is more than two. When there are more than two components in a compound, the number of
ways in which a compound with n+ 1 components can be subgrouped is a Catalan number Cn

(Huet, 2009), which is defined as:

Cn =
1

n+ 1

(
2n

n

)
The Catalan number for a 4-component compound is 5. This indicates that there are 5 distinct

ways to form valid nested structures for a 4-component compound. For example, in a compound
‘a-b-c-d’, the five possible constituencies are:

(1) << ab > c > d (2) < a < bc >> d (3) < ab >< cd > (4)a << bc > d > (5)a < b < cd >>

In Sanskrit we observe such lengthy compounds in ample amount. Since Cn grows exponentially,
determining the accurate constituency for multi-component compounds throws a challenge.

The last problem is to identify the semantic relation between the components, i.e. the com-
pound type identification. A primary difficulty arises from the ambiguity in interpretation of
the relation, as a single compound can often have multiple plausible meanings. For instance,
the compound śivapriyaḥ could mean “dear to Śiva” (śivasya priyaḥ) or “one who loves Śiva”
(śivaṁ priyaḥ yasya), depending on the context. Without sufficient contextual information,
determining the precise compound type becomes challenging.

In this paper, we present an approach to handle the task of compound type identification.
Section 2 summarizes the efforts towards developing Sanskrit compound type identifiers and
towards the end provides details about the approach followed in this paper. Section 3 discusses
how the dependency parsed structure differs from the constituency parsed structure with respect
to compound analysis and also provides the reasons why we shift towards the dependency-based
approach. Section 4 provides details on how the various lexical, syntactic and morphological clues
obtained from Aṣṭādhyāyī and other resources, have been incorporated in our type identifier,
along with the justification for considering the dvandva analysis separately. Our implementation
of the compound type identifier is provided in section 5 and the observations on the evaluation
of the type identifier is in section 6. Finally, section 7 discusses the issues and possible future
directions.

2 Existing Approaches
Recent advancements in automatic compound type analysis for Sanskrit have led to the devel-
opment of various methodologies aimed at addressing the complexity of Sanskrit compounds.
This section highlights some of the notable works in this domain, discussing their methodologies
and the type of analysis employed.

Kumar (2012) employed a combination of Pāṇinian grammatical rules and statistical methods
for compound type identification. As part of this approach, a statistical constituency parser was
developed to generate constituency structures, which serve as input for the type identification
module. This module integrates both rule-based and statistical methods to classify compounds.
However, the model is limited to handle only two-component compounds and struggles with
more complex types, such as dvandva compounds. For the statistical constituency parser and
the compound type identification tasks, the SHMT dataset was used.1 This dataset contains
compounds from various texts like Bhagavad Gītā, Caraka-saṃhitā, Pañca-tantra, etc. that
were annotated with the constituency and compound type information.

Satuluri (2015) discusses various semantic, ontological and other information needed for the
generation of compounds. This study and the observations there in are very much useful from
the analysis point of view as well.

1Sanskrit Hindi Machine Translation Consortium Dataset developed under the funding from DeiTY (Depart-
ment of Electronics and Information Technology), Govt. of India (2008-12), available at https://sanskrit.
uohyd.ac.in/scl/GOLD_DATA/tagged_data.html.



Krishna et al. (2016) proposed a classification framework for the compound type identifica-
tion task. It combines features extracted from rules in Aṣṭādhyāyī, taxonomy information and
semantic relations inferred from Amarakośa ontology (Nair and Kulkarni, 2010), and linguistic
structural information from the data using Adaptor grammar (Johnson et al., 2006). The rules
from Aṣṭādhyāyī were divided into four types: rules with lexical lists, rules with morphological
properties, rules with semantic properties of the components, rules with semantic relations be-
tween the components. The ontological relations between various words from Amarakośa were
extracted. The SHMT dataset (32,000 compounds) was used for the classification task.

Sandhan et al. (2019) proposes a neural approach that classifies compounds without consid-
ering broader context. It employs deep learning techniques, utilizing features extracted from
Sanskrit text. The model, trained on annotated corpora, relies on sequence-based architectures
such as recurrent neural networks (RNNs) and transformers. By focusing on the internal struc-
ture of compounds and word embeddings, this approach offers scalability and adaptability to
large datasets. However, it faces challenges in disambiguation, particularly when contextual
understanding is essential. The same SHMT dataset as above was used for this task.

Sandhan et al. (2022) proposed a hybrid approach (SACTI), integrating rule-based linguistic
features with deep learning techniques to improve compound classification. The system combines
handcrafted linguistic features—such as compound segmentation and phonetic similarity—with
a novel multi-task learning architecture to enhance accuracy. Additionally, it partially incor-
porates constituency-based analysis to capture hierarchical relationships within compounds,
improving the identification of compositional structures. This approach conducted their experi-
ments on the 4 coarse-grained types and 15 fine-grained types, restricting to binary compounds
(upto 48,132 compounds) collected from the SHMT dataset. This dataset was revised addition-
ally to include the context.

‘DepNeCTI’ (Sandhan et al., 2023) employs a dependency-based framework to analyze com-
pound structures, incorporating syntactic dependency parsing alongside neural classifiers. Its
dependency-based approach is particularly efficient in representing grammatical relationships,
making it well-suited for analyzing the structural dependencies of Sanskrit compounds. A novel
approach towards Nested Compound Type Identification was introduced focusing on identifying
nested spans within a multi-component compound and interpreting their implicit semantic rela-
tionships. While the same SHMT dataset was used here, the primary focus was on compounds
with more than two components, and on binary compounds with context. The dataset contains
for each of the compounds, the segmented components, nested spans, context and semantic re-
lations among the nested spans. Here 86 fine grained compound types were used along with the
usual 4 broad types. A total of 17,656 compounds with context from philosophical, literary and
Āyurvedic texts were collected for the task, and 1,189 compounds from Purāṇas were considered
for an out of vocabulary dataset.

Our research approach integrates some of the elements from the aforementioned methods. We
primarily rely on Aṣṭādhyāyī rules as the foundational framework, supplementing them with a
supportive database and linguistic heuristics wherever necessary. Our goal is to handle all types
of multi-component compounds, including dvandva compounds. We propose a compound type
identifier which is integrated with the dependency parser of Saṃsādhanī. The type identifier is
implemented to handle all the types except dvandva for which a standalone dvandva analysis
module is incorporated. We prioritize dependency parsed structure over the constituency for
various reasons, which are discussed in detail in the next section.

3 Dependency-based Compound Analysis

Sanskrit compounds exhibit intricate internal structures where multiple components combine to
form complex words. The underlying principle to form compounds is the semantic compatibility
between components, called sāmarthya. The sense in which the composition happens across two
semantically compatible components is expressed through the semantic relations or compound



types. While compound formations are predominantly binary compositions (except for dvandva
and bahupada-bahuvrīhi), due to the productive nature of compounds, we can build a nested
structure of compounds by successive binary composition of the components with these relations.
The semantic relations are thus crucial to identify the correct nested structure (Sandhan et al.,
2023).

Analyzing these structures requires a systematic approach to identify relationships among
components. Two primary frameworks—constituency and dependency—offer different perspec-
tives on compound analysis. In multi-component compounds, there can be more the one possible
spans according to various combinations of intermediate nested compounds. Figure 1 shows two
possible spans for a three-component compound in constituency analysis.

(a) < < a - b > - c > (b) < a - < b - c > >

Figure 1: Possible constituency spans for a three-component compound a-b-c

3.1 Constituency Parsed Structure

In this approach, compounds are analyzed by constructing a hierarchical structure that repre-
sents their internal syntactic composition. Each constituent (sub-compound) is represented as
an intermediate node, capturing the nested relationships within the compound. However, this
method introduces additional nodes that may not be necessary for compound type identifica-
tion, increasing computational complexity. For example, in figure 2a, the compound sumitrā-
ānanda-vardhanaḥ (one who increases the happiness of Sumitrā) is represented with a noun
phrase structure (having a left associative parse), introducing hierarchical levels that may not
contribute directly to type identification. Similarly, figure 2b shows the structure of the right-
associative three-component compound ‘utsanna-kula-dharmāḥ’ (deprived of ancestral duties
and traditions).

(a) Span 1: < <sumitrā-ānanda>T6-vardhanaḥ>T6 (b) Span 2: <utsanna-<kula-dharmāḥ>Bs3>T6

Figure 2: Possible spans for Constituency analysis with examples



3.2 Dependency Parsed Structure
Dependency-based analysis, in contrast, establishes direct relationships between components
without the need for additional intermediate nodes. Each component of the compound is linked
to the head based on grammatical / syntactic / semantic relations, making it easier to mark
the type of compound based on dependency-like relations. For instance, in figure 3b, for the
compound ‘utsanna-kula-dharmāḥ’ (deprived of ancestral duties and traditions), the components
‘dharma’ and ‘kula’ are directly linked to their heads, and the relationship can be labeled
according to its semantic function. Also, figure 3a shows the left associative span. The directed
labels (T6, Bs3, etc.)2 help us in identifying the heads of the intermediate and the external
compounds.

(a) Span 1: < <sumitrā-ānanda>T6-vardhanaḥ>T6

(b) Span 2: <utsanna-<kula-dharmāḥ>Bs3>T6

Figure 3: Dependency analysis of compounds with examples

3.3 Equivalence between Constituencey and Dependency Parsed Structures
Typically, it is observed that the avyayībhāva compounds are left-headed (pūrvapada-pradhāna).3
tatpuruṣa compounds are right-headed (uttarapada-pradhāna) and in the case of bahuvrīhi, none
of the components is the head. And finally, in the case of dvandva compounds, both (all)
components are of prime importance. So in dependency structure, we mark the relations between
these components as in figure 4. The dvandva compounds are represented as a plain string joining
all the components such as rāma_lakṣmaṇau, with the underscore (_), since both of them have
equal status.4

(a) <yathā-uddeśyam>A1 (b) <rāja-puruṣaḥ>T6

(c) <pīta-ambaraḥ>Bs6

Figure 4: Dependency-based representations of compound types with the arrows marking the
head.

2T6 stands for ṣaṣṭhī-tatpuruṣa and Bs3 stands for tṛtīyārtha-bahuvrīhi. The list of all the labels (com-
pound types) along with the tagging guidelines are available at: https://sanskrit.uohyd.ac.in/scl/GOLD_
DATA/Tagging_Guidelines/samaasa_tagging16mar12-modified.pdf.

3Here pūrvapada refers to pūrvapada-artha. Similarly for uttarapada and anyapada.
4We do not prove the equivalence between the constituency and dependency structures here, since it is outside

the scope of this paper. A separate manuscript is getting ready proving the equivalence of these structures and
how to convert one to the other automatically.



The advantage of the dependency representation is that intermediate nodes are no more
needed. That is, there will be exactly as many nodes as there are components. Hence one can
use the same algorithm of the dependency parser to parse compound structures as well. The
second advantage is that one can now use the morphological and other constraints specified in
the grammar rules of compound formation to identify the potential components that can be
related and the possible compound types. Then use a constraint solver to prune out the types
which do not satisfy the yogyatā and sannidhi. Thus, the sāmarthya between components can
be established from the compound types which were obtained using the principles of ākāṅkṣā,
yogyatā and sannidhi. Finally, a ranking algorithm should be incorporated to rank the various
constituencies obtained. In this paper, we confine ourselves to only the ākāṅkṣā module.

4 Clues for Dependency-based Compound Analysis
Pāṇini’s Aṣṭādhyāyī provides both semantic and syntactic scenarios for the construction of
compounds from words. These scenarios can be considered as clues or constraints during the
analysis of a compound. The syntactic clues pertain to the order of the components, deletion
of case, assignment of svara, etc. This also includes the nature of syntactic combinations of the
components, primarily attributed to the rule sup supā (2.1.4) with later grammarians introducing
the possibilities of other syntactic combinations like (sup-tiṅ, sup-nāma, sup-dhātu, etc.).5 On
the other hand, a majority of the semantic clues are available across the first two parts of the
second adhyāya of Aṣṭādhyāyī. Kumar (2012) extracted all the possible semantic clues from these
rules and elaborated them in detail providing in each case whether the clues can be incorporated
for the task of compound type identification or not.

Kumar (2012) developed first a statistical constituency parser which generates the con-
stituency structure. This structure is fed to the compound type identification module where
both the rule-based and statistical identifiers help in predicting the type of the compound. In
the present work, since both constituency analysis and compound type identification are ad-
dressed simultaneously in the same step, this calls for a revised set of clues that addresses both
these tasks. Thus we first revisit all these clues extracted from Aṣṭādhyāyī and perform a val-
idation check with various examples along with observations on possible clues for constituency
analysis as well. In this process, the clues are categorized into groups similar to Krishna et al.
(2016) where the categorization was based on the syntactic and semantic nature of the clues. In
our approach, the clues are reordered in such a way that the syntactically similar clues are put
together in a group. And within each group, the clues which have more precise information are
addressed first and those with more generic information are pushed to the last.

Our approach differs from Kumar (2012) in two aspects:

1. The constituency structure in Kumar (2012) was established based on co-occurrences of
the components to figure out the affinity of a component to be composable with another
component. The compound types were identified only for the compounds observed in the
constituency structure. In our case, we establish all possible compound types between each
pair of the components, and then using constraints prune out the incompatible types. In
this process, the dependency structure is constructed.

2. The clues from Aṣṭādhyāyī were categorized according to the compound types in Kumar
(2012). These are now re-organized into categories based on both syntactic and semantic
nature of the clues.

4.1 Revisiting the clues from Aṣṭādhyāyī
Kumar (2012) proposed 55 semantic clues corresponding to each sūtra from Aṣṭādhyāyī. Clues
from 21 sūtras were not implemented as extra semantic information was required. And it was

5supāṃ supā tiṅā nāmnā dhātunā’tha tiṅāṃ tiṅā
subanteneti vijñeyaḥ samāsaḥ ṣaḍvidho budhaḥ – Kārikā 28 of Vaiyākaraṇabhūṣaṇasāra



noted that for 7 rules, an implementation was not possible at all for various other reasons. We
took all of these cases and prepared a revised set of 88 conditions from the 83 rules of Kumar
(2012).

The clues are first divided into two types based on the number of constituents: two or three.
Compound formations are typically binary with some exceptions like itaretara-dvandva and
bahupada-bahuvrīhi. But some of the clues give specific information pertaining to both con-
stituency and the compound type, for certain compounds with three components. 7 of the 88
conditions require three components and these are addressed together in a group.6 The clues
pertaining to binary combinations are divided into two: those containing semantic conditions
(76), and conditions for exceptional compounds (5). The remaining 76 conditions are further
divided into groups based on either the morphosyntactic nature of their constituents or the type
of the compound:

1. ktānta (where either the first or the second or both components have the kta suffix),

2. non-ktānta tatpuruṣa (where neither component has the kta suffix),

3. karmadhāraya (which are not covered in the first two cases),

4. avyayībhāva,

5. dvigu-tatpuruṣa,

6. residual tatpuruṣa,

7. bahuvrīhi,

8. nañ-tatpuruṣa, and

9. ṣaṣṭhī-tatpuruṣa

Within each of the groups, the clues are ordered in such a way that the more precise informa-
tion is checked first and the less precise information later. Clues which prescribe a specific set of
words in either iic (in initio composite) or ifc (in fini composite) or both are given higher pref-
erence. Then the syntactic and morphological clues like kta, yat, gender, number, avyaya, etc.
This is followed by semantically and ontologically tagged lexicon grouped into various lists such
as kālavācī, varṇavācī, nadīvācī, jātivācaka, etc. These are collected as and when an example is
encountered. Finally, the rest of the conditions follow. The morphosyntactic clues deploy the
ākāṅkṣā constraint and help in establishing the possible compound types. Yogyatā has not yet
been extensively dealt with but the above semantically tagged word lists denoting a particular
entity or concept, provide some help in determining whether yogyatā is present or not. Thus,
the first level of establishing sāmarthya is done using these constraints and to disambiguate
between the observed types, we need a dedicated constraint solver in the second level.

4.2 Clues from the Heritage Segmenter
Sanskrit Heritage Segmenter (SH)7 is a lexicon-directed segmentation engine that produces
the segmentation along with the morphological analysis and the part of speech category for
each of the possible segments produced. The part of speech categories, called phases, follow
closely the Pāṇinian system of derivation and inflection mechanisms. For instance, according
to Aṣṭādhyāyī,8 a word is either a subanta (noun) or a tiṅanta (verb). Subantas are prātipadikas
(stems) inflected with sup suffixes and tiṅantas are dhātus inflected with the tiṅ suffixes. The
phases are addressed based on the inflectional and derivational suffixes used, type of the stem

6All the groups are presented in a tabular format in Appendix A.
7https://sanskrit.inria.fr
8suptiṅtam padam 1.4.14



or root (noun, pronoun, verb), compound components, preverbs, etc. (Huet, 2024). The phases
are represented using various colors in the graphical interface. For example, deep sky blue for
nouns, light blue for pronouns, red for verbs, mauve for indeclinables, yellow for iics, etc. Out
of the 54 phases constructed in SH, 15 are of interest for the current task of compound analysis
and are enlisted in Table 1.

Phase Type Color Example
Iic first part of compounds yellow rāma-alayaḥ

Iiv, Iivc, Iivv inchoatives (cvi verbal compounds) orange śuklī -karoti
Iiif ifc of iic kaki kumbha-kāra-putraḥ
Ifc second part of compounds1 cyan kumbha-kāraḥ

Indifc indeclinable forms usable as ifcs mauve bhīṣma-droṇa-pramukhataḥ
A, An privative nañ-compound formations yellow a-prāpya
Ai, Ani initial privative nañ-compounds yellow a-kīrti-karam

Iik, Iikc, Iikv kṛdanta iics yellow kaṣṭa-śritaḥ
Iiy avyayībhāvas pink upa-kṛṣṇam

Table 1: Phases of Sanskrit Heritage Segmenter usable for compound analysis

The following inferences can be observed from the phases provided by SH:

1. The avyayībhāva iics can be detected using the phase Iiy.

2. Given a compound, we can detect whether it can have a bahuvurīhi interpretation using the
phase Ifc. But we would require the context to confirm if it is bahuvrīhi or not. Generally,
the final part of the compounds are inflected with the sup-suffix and would come under the
regular Noun phase. The phase (Ifc) corresponds to specific cases of inflections on the final
components when compounds like pīta-ambaraḥ, kumbha-kāraḥ are formed. ambaraḥ is not
a valid form of the neuter stem ambara, but the gender is inherited from the surrounding
noun phrase head. Generated stems like -kāra are restricted to the role of ifcs. In case of
compounds like pīta-ambaram, the machine will mark three possible relations viz. tatpuruṣa
or a bahuvrīhi reading with ambaram as neuter in either nominative or accusative case, and
a bahuvrīhi reading with ambaram as masculine accusative. The presence of a substantive
with the same case-gender-number information will propose the bahuvrīhi solution with
higher confidence. The dependency parser will rank these solutions considering the complete
sentence.

3. In a multi-component compound setup, the phase Iiif helps in addressing the constituency
of the compound.

4. With the phase Iiv, the cvi-compounds can be detected.

5. Ai and Ani help in disambiguating whether the initial compound is a privative or not in a
multi-component compound setup with the initial component being the negative compound
particle “a” or “an”.

Additionally, the privatives are mostly lexicalized except when they form absolutive com-
pounds. And some of the aluk compounds (like pātresamita) and compounds with retroflexion
effects (for eg. dūrvāvaṇa) are also lexicalized in SH.

4.3 Analysing Dvandva Compounds
The dvandva (or copulative) is a special type of compound, where all the components compose
together to denote a collection. This is an exception to the general notion of binary composition



during compound formation. In Aṣṭādhyāyī, dvandva compounds are defined by the rule cārthe
dvandvaḥ.9 Dvandva can be classified into two types: itaretara and samāhāra.

1. itaretara: when a conjunction of mutually compatible entities is intended (plakṣaśca nya-
grodhaśca plakṣa-nyagrodhau),10

2. samāhāra: when an aggregation of similar entities is intended (sañjñā ca paribhāṣā ca
tayoḥ samāhāraḥ sañjñā-paribhāṣam).11

In the case of itaretara-dvandva, all the components are considered equally important and they
are considered individually. The number of the overall compound depends on the number of
entities present and the gender depends on the gender of the last component. For example, rāma-
lakṣmaṇa-bharata-śatrughnāḥ. In the case of samāhāra-dvandva, the components are considered
as a group and not individually. The overall gender of the compound is in neuter. And the
number is singular. For example, pāṇi-pādam. There is another type of dvandva called ekaśeṣa-
dvandva compounds which are special cases where only one of the components will remain in the
final compound, with gender and number addressed similarly to itaretara. For example, pitarau
(māta ca pitā ca). Some grammarians consider ekaśeṣa as a separate vṛtti,12 and not under the
purview of samāsa.

We observe that morphological analysis, specifically the gender and number of the overall
compound, helps in detecting a dvandva compound. Sometimes, the final component could have
certain indicators like the stem ādi. For example kāka-kūrma-ādīnām. With such a stem, the
set of previous entities can be considered as a dvandva compound. Additionally, the sāmarthya
in the dvandva components lies with their similar ontological structure:

kāka → (padārtha, dravyam, pṛthvī, calasajīva, manuṣyetara, jantu, pakṣī)13

kūrma → (padārtha, dravyam, pṛthvī, calasajīva, manuṣyetara, jantu, ubhayacara)

Both have common parent nodes until jantu and thus have a higher tendency of mutual
compatibility to become dvandva. For this, we need a semantically and ontologically annotated
data with more specific features to handle dvandva compounds.

Morphological clues do help to an extent, but with this difficulty in incorporating ontological
clues for identifying the sāmarthya for dvandva between the components, an alternate approach
is required to address dvandva compounds. We can thus build sets of words where each set
contains stems which have the sāmarthya to form dvandva compounds with any other stem in
the same set. We create two such lists: (1) sets of words where the order needs to be preserved
(frozen compounds or nitya-samāsas) and (2) sets of words where order does not matter. Thus
stems from a similar domain are collected together from a list of dvandva compounds extracted
from the SHMT dataset.

Finally, dvandva analysis has to be done separately and prior to the analysis of other compound
types because of three reasons:

• The n-ary nature of dvandva as opposed to the binary,

• The approach involves comparison with a collection of stems in a particular domain and
does not cater to either the morphological or syntactic clues, and thus cannot be integrated
with the clues mentioned earlier for other compounds,

• In a nested compound structure, dvandva compounds can be found more frequently in the
inner nested structure, and the dvandva composition of other compounds like tatpuruṣa,
bahuvrīhi is very rare in usage.

9Aṣṭādhyāyī 2.2.29
10militānām anvayaḥ
11samūhaḥ
12kṛt-taddhita-samāsa-ekaśeṣa-sanādyanta are the five vṛttis.
13Extracted from the Amarakośa knowledge web: https://sanskrit.uohyd.ac.in/scl/amarakosha/index.

html



5 Implementation of the Compound Analyser

In the present work, as the compound analysis task is integrated with the dependency analysis
environment, it adheres to the same procedure deployed in the dependency parser with the
following modifications:

1. Segmentation (with compound boundaries marked)

2. Morphological analysis for all words and compound components

3. Dvandva Analysis

4. Identifying the relations

5. Constraint solver (partially implemented)

The segmentation is obtained from SH, which also marks the compound boundaries. In the
current setup, phase-level clues from SH are not taken into account. The segmented sentence is
then passed to Saṃsādhanī’s morphological analysis engine that produces all possible morpho-
logical analysis for each of the segments. It marks all the iics as samāsa-pūrva-pada.

Generally, the words with the possible morphological analyses are sent to the dependency
parser, which builds a set of dependency relations between every word, based on the śābdabodha
theories. But we insert the dvandva analysis module here which takes in the words and their
corresponding morphological analysis and whenever a series of components match any of the
existing dvandva compound components lists collected earlier, these components are merged
together (with an underscore) to represent a single entity. This resolves the representation
issues of the dvandva compounds and also makes sure that in the next stage, the constraint
solver does not overgenerate the relations with the components of the dvandva compounds. The
results of the dvandva module are passed onto the parser. The clues for detecting and analysing
compound types and the constituency are integrated into this parsing engine which involves
picking up the components based on their syntactic category followed by running through the
clues to identify the possible compound types. The graph marking the relations between various
components is generated as follows.

1. For every triplet of compound components, it runs through the clues for deciding the con-
stituency and identifying the compound type and assigns relations wherever possible,

2. For every pair of compound components:

(a) if the first component is a or an, then it assigns nañ-tatpuruṣa,
(b) the list of exceptional compounds is checked (this contains the special cases like aluk

compounds, closed and open sets of compounds like mayūravyaṃsaka),
(c) conditions pertaining to the clues are checked in the following order: avyayībhāva,

ktānta, non-ktānta tatpuruṣa, karmadhāraya, dvigu-tatpuruṣa, residual tatpuruṣa, bahu-
vrīhi and finally ṣaṣṭhī-tatpuruṣa

(d) if none of the relations is obtained, then ṣaṣṭhī-tatpuruṣa is assigned by default

The set of relations is then passed to a constraint solver that resolves various conflicts that
occur between the predicted relations. In the current setup, for the constituency analysis, it is
assumed by default that the compounds with more than two components have left associativity.
The compound types are ranked and simple constraints of proximity and every node having only
one incoming arrow are applied.



6 Evaluation
For the present implementation, we collected a list of compounds proposed as examples for each
of the samāsa-vidhāyaka-sūtras from Kāśikā and Siddhāntakaumudi. These were predominantly
two-component compounds with a few three component compounds. These examples were
used as development sets along with the rules. Also, all the compounds of Bhagavad Gītā
were collected and used for testing. Here we describe the performance of the dependency-based
compound type identification module on these two test sets. We elaborate on where the identifier
fails and what needs to be done for improving the analyser.

As the compound type identifier is integrated into the dependency parser, it requires a com-
plete sentence so that an overall dependency tree is obtained. But this implementation does
not consider context into account. This helps us understand where exactly context plays an
important role and for what type of compounds, context is critical. To account for this, each of
the examples is provided with an auxiliary verb like (asti, bhavati, etc.) depending on the case
and number of the overall compound. The ground truth and the results are obtained as JSON
objects for ease of comparison.

Metrics: The macro-averaged label score (LS), labeled attachment score (LAS) and unlabeled
attachment score (UAS) are considered for evaluating all the compounds. Additionally, the
precision recall and f-score values are recorded for each of the coarse compound types.

6.1 Error Analysis on Aṣṭādhyāyī examples
311 compounds from Aṣṭādhyāyī were considered for evaluation. The relations were predicted
correctly for 194 compounds, with the macro-averaged LAS being 62.38%. A manual error
analysis was done on the remaining 117 examples and here are the observations. There were
five kinds of issues present:

1. multiple relations: This is the most common issue where multiple relations are assigned
based on several conditions and the constraint solver does not know how to disambiguate
between them. 56 examples are affected because of this issue. For example, go-hitam is
a caturthī-tatpuruṣa compound but the possible relations are ṣaṣṭhī-tatpuruṣa, caturthī-
tatpuruṣa, tṛtīyā-tatpuruṣa, karmadhāraya, but tṛtīyā-tatpuruṣa is produced as the final
relation. There are two possible solutions to resolve such cases: (1) stricter conditions are
to be placed based on observations to disambiguate at the level of type identification, or (2)
the constraint solver should contain some measure to rank the possible relations obtained.

2. no morphological analysis: This corresponds to 30 examples where Saṃsādhanī’s mor-
phological analysis fails to analyse one of either iic or ifc and the parser does not produce
any result. For example, (kaṣṭa-samīkṛtam). One solution is to update the morphological
analyser to accept such missing forms.

3. incorrect morphological analysis: 19 cases have this issue where the expected morpho-
logical analysis is not available in the possible morphological analyses. For example, the
compound sukha-apetaḥ is a pañcamī-tatpuruṣaḥ compound in the ground truth but it is
analysed as a ṣaṣṭhī-tatpuruṣaḥ compound because apeta is not analysed as a ktānta. Even
here, the morphological analyser can be improved by incorporating such forms.

4. missing data: The semantically and ontologically tagged lexicon is of limited size. For
example, for the compound pañca-nadam, nadam was missing in the nadī_vācī list. These
correspond to 10 examples and there is a need to update such lexicon.

5. no condition: In some rare cases, the set of conditions put forth based on the clues are
insufficient and we have to bring in more clues for addressing this issue. 2 compounds have
been affected by this issue. For example, uccaiḥ-kṛtya needs a condition that checks that
the ifc has a lyap suffix instead of a kta suffix. This condition needs to be added.



6.2 Bhagavad Gītā Examples
Bhagavad Gītā possesses a huge number of compounds across its 700 verses. We collected a
total of 1,580 compounds from the SHMT dataset, averaging two compounds per verse. An
analysis was done on the distribution of the compound types and it was observed that there are
2,052 compound formations, including the inner compounds of a nested compound structure.
Of these, 526 are bahuvrīhi and 349 are ṣaṣṭhī-tatpuruṣa resulting in a combined 885 instances.14

The distribution of the number of components per compound is shown in table 2.

Number of components Number of compounds
2 1,229
3 253
4 84
5 9
6 1
7 4

Table 2: Component-wise distribution of Bhagavad Gītā compounds

Out of these, 88 compounds had issues with morphological analysis, i.e., at least one of the
components could not be recognized by the morphological analyser. Of the remaining 1,492
compounds, 550 were predicted with the correct compound types with the correct constituency.
756 compounds had a partial match, i.e, at least one of the relations was correctly matched. In
the ground truth analysis of the compounds, only the coarse grained annotations were present
for avyayībhāva and karmadhāraya types and the evaluation was done on these types alone. The
macro-averaged LS, UAS and LAS scores are recorded in table 3. The confusion matrix for the
overall coarse classification is presented in table 4 and the precision, recall and f-score for each
of the types is shown in table 5.

Morph-issue Compounds LS UAS LAS
2-component compounds 78 1,151 0.43 - 0.43

3 to 7 component compounds 10 341 0.49 0.88 0.45
all compounds 88 1,492 0.41 0.92 0.40

Table 3: Label Scores (LS), Unlabeled Attachment Scores (UAS) and Labeled Attachment Scores
(LAS) of Bhagavad Gītā compounds

A sample set of unanalysed compounds were considered for error analysis and here are the
observations:

• Since the conditions for bahuvrīhi compounds in the implementation were only for certain
exceptional subtypes of bahuvrīhi, most of these went unanalysed. In addition to these
exceptional compounds, bahuvrīhi was also identified when a change in the (inherent) gender
is observed in the final component.

• 41 dvandva compounds were not analysed because of two reasons:

– Some of the dvandva compounds had a bahuvrīhi or tatpuruṣa compound embedded
within.

14In the SHMT dataset, the compound types were manually annotated based on the context but in this imple-
mentation, we are not considering context while detecting a particular type.



- None AB BV D KD K TP
None 0 0 0 0 0 0 0
AB1 0 17 0 0 0 0 6
BV2 37 0 126 2 31 0 329
D3 1 0 8 205 12 0 20

KD4 1 0 28 0 61 0 121
K5 0 0 0 0 0 0 4

TP6 49 0 193 12 22 0 765
1 AB - avyayībhāvaḥ
2 BV - bahuvrīhiḥ
3 D - dvandvaḥ
4 KD - karmadhārayaḥ
5 K - kevala-samāsaḥ
6 TP - tatpuruṣaḥ

Table 4: Coarse-level confusion matrix for Bhagavad Gītā compounds

Precision Recall F1-score Support
avyayībhāvaḥ 1.00 0.74 0.85 23

bahuvrīhiḥ 0.35 0.24 0.29 526
dvandvaḥ 0.93 0.83 0.88 246

karmadhārayaḥ 0.48 0.29 0.36 212
kevala-samāsaḥ 0.00 0.00 0.00 4

tatpuruṣaḥ 0.61 0.73 0.67 1041
micro avg 0.60 0.57 0.58 2052
macro avg 0.56 0.47 0.51 2052

weighted avg 0.57 0.57 0.56 2052

Table 5: Coarse-level Precision, Recall and F-Score for Bhagavad Gītā compounds

– In the case of multiple morphological analyses for a component, the first stem was
considered.15

• Similar to the Aṣṭādhyāyī examples, the analyser failed to disambiguate between various
predicted types due to the lack of a good constraint solver. The conflict mainly lies between
tṛtīyā-tatpuruṣa, ṣaṣṭhī-tatpuruṣa and karmadhāraya.

• For the karmadhāraya compounds, we need a good lexicon with their ontological categories
such as jāti, guṇa, dravya, etc.

• In some cases, the gold annotations were found to be incorrect, especially for nested com-
pounds. For example, an-eka-janma-saṃsiddaḥ should have been annotated as:
< < < an - eka > Tn > - janma > K - saṃsiddhaḥ > T7,
but is annotated in the gold as:
< < < an - eka > K > - janma > K - saṃsiddhaḥ > T7.

15This is mainly to avoid over-generation of the dvandva possibilities. For all other compound types, all possible
morphological analyses were considered.



6.3 Evaluation of SH results
Based on the clues from SH discussed earlier, it can be observed that avyayībhāva and bahuvrīhi
compounds can be detected using the phases of SH. In order to check the performance, a list
of avyayībhāva (136) and bahuvrīhi (2,126) compounds was collected from the SHMT dataset.
Each of the compounds was run on the SH engine to produce the segments along with their phase
and morphological analyses. The segments and the phases were compared with the ground truth
segments and phases and the observations are recorded in table 6. In addition to this test set,
the avyayībhāva (21) and bahuvrīhi (18) compounds from the Aṣṭādhyāyī examples were also
run on the SH engine and the observations are recorded.

SHMT Aṣṭādhyāyī
Avyayībhāva Bahuvrīhi Avyayībhāva Bahuvrīhi

Total Compounds 136 2,126 21 18
Unrecognized 14 213 4 3

Correct Segmentation 83 1,358 11 11
Correct Phase 58 637 8 5

Incorrect Segmentation 39 555 6 4
Incorrect Phase 25 721 3 6

Table 6: Performance of SH on Avyayībhāva and Bahuvrīhi compounds from SHMT dataset and
Aṣṭādhyāyī examples

Considering the 25 avyayībhāva compounds from SHMT dataset, where SH was able to seg-
ment it correctly but couldn’t detect it as an avyayībhāva, we observed that some of the com-
pounds with yathā or prati in the iic are misjudged. Some of the other examples are nānā-
vidham, sama-akṣam, daśa-ānanaḥ, madhya-yātram, etc. Considering the Aṣṭādhyāyī exam-
ples, the compounds dvi-muni, sapta-gaṅgam, pañca-nadam were segmented correctly but not
detected as avyayībhāva, suggesting that the saṅkhyāpūrva-nadyuttarapada and saṅkhyāpūrva-
vaṃśyottarapada types of avyayībhāva compounds are not detected by SH.

Considering the 8 bahuvrīhi compounds from the Aṣṭādhyāyī examples where SH could seg-
ment it correctly but not decide whether it can be bahuvrīhi or not, we observed that the
compounds having words indicating directions in both the components (digvācaka-bahuvrīhi)
are not detected. For example, dakṣiṇa-pūrvā, pūrva-uttarā, etc. although the gender of the
ifc has been identified as feminine correctly. And another set of compounds which have nu-
merals in either of the components are not detected. For example, tricaturāḥ, āsanna-viṃśāḥ,
adhika-viṃśāḥ, etc. An error analysis on the SHMT compounds is still pending.

7 Inferences and Discussion
The present work is an attempt to build a rule-based compound analyser, where instead of doing
constituency analysis first followed by the type identification we identify all possible types of
compounds between the components and then apply the constraints to get the possible analyses
that are finally ranked based on the ranks of various types. These ranks are obtained based on
the involved ontological constraints and also the statistics of the annotated tagged data available.

Contextual Analysis: The current implementation does not consider the context at all.
Hence many bahuvrīhi compounds were not detected at all, as they are required to be in a
modifier-modified (viśeṣaṇa-viśeṣya) relation with another word in the same context, while the
sentences we gave as an input had a single compound with a verb. With the help of con-
textual analysis, we will be able to define possible relations between the overall compound
and other words in the sentence. For example, the avyayībhāva compounds are predominantly
kriyāviśeṣaṇa for their corresponding verbs in the sentence, with a few exceptions like pare-
gaṅgāt, madhye-gaṅgam, etc. where the corresponding vibhakti can be used for assigning the



dependency relation with the verb. For mostly all other compounds the depencency relation is
assigned based on the morphological clues from the last component of the compound. In the
present context we have not yet implemented the asamartha compounds and thus cases such as
śāpena astaṅgamitamahimā would not be analysed properly.

Constraints: The evaluation results showed that majority of the compounds had multiple
types predicted and a constraint solver is required to disambiguate them. The inferences from
the examples of Bhagavad Gītā observed in section 6.2 can be used here for disambiguating
mainly between bahuvrīhi, ṣaṣṭhī-tatpurṣa and karmadhāraya. More observation is required
on various other examples to bring about such inferences. For instance, the ṣaṣṭhī-tatpurṣa
compounds require a specific sambandha like pitā-putra-sambandha for the compound pāṇḍu-
putrāṇām. Such relations can be obtained from the ontology and Named Entity Recognizers.
Also, for narrowing down to the expected type, we can consider the predominance of relations
based on the occurrences like ṣaṣṭhī-tatpurṣa > bahuvrīhi > karmadhāraya. A constraint solver
thus has two tasks: (1) to disambiguate between multiple types for a compound, and (2) to
disambiguate between different spans of a nested structure.

References
V. V. Bhandare. 1995. Structural and semantic aspects of the dvandva compound. Annals of the

Bhandarkar Oriental Research Institute, 76(1/4):89–96.

Sushant Dave, Arun Kumar Singh, Prathosh A. P., and Brejesh Lall. 2021. Neural compound-word
(sandhi) generation and splitting in sanskrit language. In CODS-COMAD 2021: 8th ACM IKDD
CODS and 26th COMAD, Virtual Event, Bangalore, India, January 2-4, 2021, pages 171–177. ACM.

Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Linguistic Modeling, 4(2):117–126.

Gérard Huet and Amba Kulkarni. 2014. Sanskrit linguistics web services. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: System Demonstrations, pages
48–51.

Gérard Huet. 2003. Lexicon-directed segmentation and tagging of Sanskrit. In XIIth World Sanskrit
Conference, Helsinki, Finland. Final version in Themes and Tasks in Old and Middle Indo-Aryan
Linguistics, Eds. Bertil Tikkanen and Heinrich Hettrich., pages 307–325, Delhi, August. Motilal Ba-
narsidass.

Gérard Huet. 2009. Sanskrit Segmentation. In Proceedings of the South Asian Languages Analysis
Roundtable XXVIII, October.

Gérard Huet. 2024. Hoisting the colors of Sanskrit. In Arnab Bhattacharya, editor, Proceedings of the
7th International Sanskrit Computational Linguistics Symposium, pages 39–51, Auroville, Puducherry,
India, February. Association for Computational Linguistics.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian models. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems, volume 19. MIT Press.

S. D. Joshi. 1968. Patañjali’s vyākaraṇa-mahābhādsya. samarthāhnika (p 2.1.1).

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016.
Compound type identification in Sanskrit: What roles do the corpus and grammar play? In Dekai Wu
and Pushpak Bhattacharyya, editors, Proceedings of the 6th Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP2016), pages 1–10, Osaka, Japan, December. The COLING
2016 Organizing Committee.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1-4):169–177.

Amba Kulkarni. 2019. Sanskrit Parsing based on the theories of Śābdabodha. IIAS, Shimla and D K
Printworld.



Amba Kulkarni. 2021. Sanskrit parsing following indian theories of verbal cognition. ACM Transactions
on Asian and Low-Resource Language Information Processing, 20(2):1–38, April.

Anil Kumar. 2012. Sanskrit Compound Processor. Ph.D. thesis, University of Hyderabad, Hyderabad.

Sivaja S. Nair and Amba Kulkarni. 2010. The knowledge structure in amarakośa. In Girish Nath
Jha, editor, Sanskrit Computational Linguistics, pages 173–189, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Bhagyalata Pataskar. 1996. Some observations about the compound structure of Aṣṭādhyāyī. Annals of
the Bhandarkar Oriental Research Institute, 77(1/4):121–131.

Jivnesh Sandhan, Amrith Krishna, Pawan Goyal, and Laxmidhar Behera. 2019. Revisiting the role of
feature engineering for compound type identification in Sanskrit. In Pawan Goyal, editor, Proceedings
of the 6th International Sanskrit Computational Linguistics Symposium, pages 28–44, IIT Kharagpur,
India, October. Association for Computational Linguistics.

Jivnesh Sandhan, Ashish Gupta, Hrishikesh Terdalkar, Tushar Sandhan, Suvendu Samanta, Laxmidhar
Behera, and Pawan Goyal. 2022. A novel multi-task learning approach for context-sensitive compound
type identification in Sanskrit. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Puste-
jovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao
Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil
Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na, editors, Proceedings of the 29th International
Conference on Computational Linguistics, pages 4071–4083, Gyeongju, Republic of Korea, October.
International Committee on Computational Linguistics.

Jivnesh Sandhan, Yaswanth Narsupalli, Sreevatsa Muppirala, Sriram Krishnan, Pavankumar Satuluri,
Amba Kulkarni, and Pawan Goyal. 2023. DepNeCTI: Dependency-based nested compound type
identification for Sanskrit. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 13679–13692, Singapore, December.
Association for Computational Linguistics.

Pavan Kumar Satuluri. 2015. Sanskrit Compound Generation: With a Focus on the Order of Operations.
Ph.D. thesis, University of Hyderabad, Hyderabad.

Preeti Shukla, Amba Kulkarni, and Devanand Shukl. 2013. Geeta: Gold Standard Annotated Data,
Analysis and its Application. In Proceedings of the 10th International Conference on Natural Language
Processing, CDAC, Noida, India, December. NLP Association of India.



Appendices
A Clues for identifying the types

Num iic1 (a) iic2 (b) ifc (c) Extra Type Rule ExamplesInformation
1 ktānta a / an ktānta - < a− < b− c > Tn > K2 2.1.60 kṛta-a-kṛtam
2 ktānta prādi ktānta - < a− < b− c > Tp > K2 2.1.60 kṛta-apa-kṛtam

3 avayava-vācī ahorātra ktānta avayava-vācī
<< a− b > K − c > T7 2.1.60 pūrva-ahna-kṛtam,

aho-rātra apara-rātra-kṛtam
4 - a / an - - < a− < b− c > Tn > K2 2.1.60 kraya-a-krayikā
5 - a / an - - < a− < b− c > Tn > K2 2.1.60 māna-un-mānikā
6 dik-vācī - - - << a− b > T − c > B 2.1.51 pūrva-śālā-priyaḥ
7 saṅkhyā-vācī - - - << a− b > Td− c > B 2.1.51 pañca-gava-dhanaḥ

Table 7: Conditions for deciding constituency and assigning types for 3-component compounds

List Type Rule Examples
1 T7 2.1.47 udake-viśīrṇam, bhasmani-hutam
2 T7 2.1.48 pātre-samitāḥ, udumbara-maśakāḥ
3 T7 2.1.44 araṇye-tilakāḥ, vane-kaserukāḥ
4 T 2.1.72 mayūra-vyaṃsakaḥ, chātra-vyaṃsakaḥ
5 A3 2.1.17 tiṣṭhadgu, āyatī-gavam

Table 8: Conditions for exceptional compounds

Num iic ifc Extra Type Rule ExamplesInformation
1 śreṇyādi ktānta - K 2.1.59 śreṇi-kṛtāḥ, eka-kṛtāḥ
2 ktānta ktānta - K1 2.1.49 snāta-anuliptaḥ
3 - patita - T2 2.1.24 naraka-patitaḥ
4 - patita - T5 2.1.38 svarga-patitaḥ
5 - śritādi1 - T2 2.1.24 kaṣṭa-śritaḥ
6 - hita, rakṣita - T4 2.1.36 go-rakṣitam
7 - bhīta - T5 2.1.37 vṛka-bhītam
8 - apeta, etc.2 - T5 2.1.38 sukha-apetaḥ
9 svayam ktānta - T2 2.1.25 svayam-vilīnam
10 khaṭvā ktānta - T2 2.1.26 khaṭvā-rūḍhaḥ
11 sāmi ktānta - T2 2.1.27 sāmi-kṛtam
12 tatra ktānta - T7 2.1.46 tatra-kṛtam
13 kālavācī ktānta - T2 2.1.28 ahaḥ-saṅkṛāntāḥ
14 stokādi3 ktānta dūrārtha words T5 2.1.39 śreṇi-kṛtāḥ
15 prāpta, āpanna - - T2 2.2.04 prāpta-jīvikaḥ

16 - ktānta karaṇa verbs T5 2.1.32 ahi-hataḥ
root from karaṇa verbs paraśu-chinnaḥ

17 - words ending in yat, ṇyat karaṇa verbs T3 2.1.33 kāka-peyāroot from karaṇa verbs
1 śrita, atīta, gata, atyasta, prāpta, āpanna
2 apeta, apoḍha, mukta, apatrasta
2 stoka, antika, dūra, kṛcchra

Table 9: Conditions for group 1 ktānta



Num iic ifc Extra Type Rule ExamplesInformation
1 kālavācī yat-ending word in the sense of ṛṇa T7 2.1.43 māsa-deyam
2 kālavācī - T2 2.1.29 muhūrta-sukham
3 - pūrvādi1 ūnārtha words T3 2.1.31 māsa-pūrvaḥ
4 - annavācī words annavācī words T3 2.1.34 dadhi-odanaḥ
5 - bhakṣyavācī words bhakṣyavācī words T3 2.1.35 guḍ-dhānāḥ
6 - bhaya, bhīti, bhī T5 2.1.37 vṛka-bhayam
7 - śounḍādi words śounḍādi words T7 2.1.40 akṣa-śouṇḍaḥ
8 - siddha, śuṣka, pakva, bandha - T7 2.1.41 cakra-bandhaḥ
9 - dhvāk̇ṣavācī words dhvāk̇ṣavācī words T7 2.1.42 tīrtha-dhvāk̇ṣaḥ
10 - guṇavacana words guṇavacana words T3 2.1.30 śaṅkulā-khaṇḍaḥ
10 - tadartha, artha, bali, sukha tadartha words T4 2.1.30 yūpa-dāru

1 pūrva, sadṛśa, sama, ūnārtha, kalaha, nipuṇa, miśra, ślakṣṇa

Table 10: Conditions for group 2 non-ktānta

Num iic ifc Extra Type Rule ExamplesInformation
1 yuvan, yuvati khalati1 - K2 2.1.67 yuva-khalatiḥ, yuva-jaratī
2 kumāra śramaṇādi - K 2.1.70 kumāra-śramaṇā
3 eka, etc.2 - - T 2.1.49 eka-śāṭī, sarva-devāḥ
4 pūrvādi3 - - K1 2.1.58 pūrva-puruṣaḥ
5 sat, etc.4 - - K1 2.1.61 mahā-puruṣaḥ
6 katara, katama - - K1 2.1.63 katara-kaṭhaḥ
7 kim - - K1 2.1.64 kim-rājā

8 pāpa, aṇaka - - K2 2.1.54 pāpa-nāpitaḥkutsa words

9 - vṛndāraka - K2 2.1.62 go-vṛndārakanāga, kuñjara
10 catuṣpāda-jātivācaka garbhiṇī - K2 2.1.71 go-garbhīṇī
11 varṇavācaka varṇavācaka - K3 2.1.69 lohita-sāraṅgaḥ
12 jātivācaka poṭā, etc.5 - K2 2.1.65 agni-stokaḥ
13 jātivācaka praśaṃsāvācaka - K2 2.1.66 go-matallikā
14 kṛtya, tulyārtha ajātivācaka tulyārtha words K 2.1.68 tulya-śvetaḥ, sadrśa-mahān
15 - vyāghrādi - K5 2.1.56 puruṣa-vyāghraḥ
16 dravyavācī guṇa - K4 2-1-55 śastrī-śyāmā
17 guṇa, saññā, kriyā jātivācaka - K1 2-1-57 nīla-utpalam
18 - kutsita words - K2 2-1-53 vaiyākaraṇa-khasūciḥ

1 khalati, palita, valina, jarati, jaran
2 eka, sarva, jarat, purāṇa, nava, kevala
3 pūrva, apara, prathama, carama, jaghanya, samāna,madhya, madhyama, vīra
4 sat, mahat, parama, uttama, utkṛṣṭa
5 poṭā, yuvati, stoka, katipaya, ghṛṣti, dhenu, vaṣā, vehat, baṣkayaṇī, pravaktṛ, śrotriya, adhyāpaka, dhūrta

Table 11: Conditions for group 3 karmadhāraya



Num iic ifc Extra Type Rule ExamplesInformation
1 - prati - A2 2.1.09 sūpa-prati

2 akṣa, śalākā pari - A2 2.1.10 akṣa-parinumerals
3 prādi - - A1 2.1.06 adhi-strī, upa-kumbham
4 yāvat - - A1 2.1.07 yāvat-amatram
5 apa, pari, bahis - - A1 2.1.12 bahir-grāmam
6 ā - - A1 2.1.13 ā-kumāram
7 abhi, prati - - A1 2.1.14 prati-agni
8 anu - - A1 2.1.16, 2.1.16 anu-vanam, anu-gaṅgam
9 pāre, madhye - - A7 2.1.62 pāre-gaṅgam
10 numerals vaṃśyavācī - A6 2.1.19 dvi-muni
11 numerals nadīvācī - A6 2.1.20 sapta-gaṅgam

Table 12: Conditions for group 4 avyayībhāva

Num iic ifc Extra Type Rule ExamplesInformation
1 ardha - - T1 2.2.02 ardha-pippalī

2 dvitīya, tṛtīya - - T 2.1.13 dvitīya-bhikṣācaturtha, turya, turīya

3 - dvitīya, tṛtīya - T6 2.2.03 bhikṣā-dvitīyamcaturtha, turya, turīya
4 ku - - T 2.2.18 ku-puruṣaḥ
5 prādi - - T 2.2.18 pra-ācāryaḥ
6 pūrvādi1 - - T 2.2.01 pūrva-kāyaḥ
7 - yājakādi - T6 2.2.09 brāhmaṇa-yājakaḥ
8 digvācī - named entity T 2.1.50 pūrva-iṣukāmaśamī
9 taddhitānta-digvācī 2 - - T 2.1.51 paurva-śālaḥ
10 kālavācī - - T 2.2.05 māsa-jātaḥ
11 īṣat guṇavacana - T 2.2.07 īṣat-kaḍāraḥ
12 words denoted by gati - - T 2.2.18 urarī-kṛtam
13 - bound morphemes3 - U 2.2.19 kumnbha-kāraḥ
14 - krīḍā-jīvika - T6 2.2.17 danta-lekhakaḥ

1 pūrva, apara, adhara, uttara
2 digvācī with taddhita suffix
3 like kāra

Table 13: Conditions for group 6 tatpuruṣaḥ

Num iic ifc Extra Type Rule ExamplesInformation
1 āsanna, dūra, adhika saṅkhyāvācī - B 2.2.25 āsanna-daśāḥ
2 digvācī digvācī - B 2.2.26 dakṣiṇa-pūrvā
3 sa non-neuter gender - B 2.2.28 sa-putraḥ
4 indeclinables saṅkhyāvācī - B 2.2.25 upadaśāḥ

Table 14: Conditions for group 7 bahuvrīhi


