Converting Constituency Structures to Dependency Structures for Sanskrit: Linguistic Issues

Pawan Goyal\(^1\) and Amba Kulkarni\(^2\)

\(^1\)Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur
\(^2\)Department of Sanskrit Studies, University of Hyderabad

February 8th, 2014
Outline

1. Introduction
2. Dataset
3. Methodology
4. Results and Discussions
Outline

1 Introduction

2 Dataset

3 Methodology

4 Results and Discussions
Verbal understanding of any utterance requires the knowledge of how words in that utterance are related to each other.

Constituency and dependency parsers are among the main frameworks to represent this knowledge as a parse tree.
View sentence structure in terms of the constituency relation.

The constituency relation derives from the subject-predicate division, based on term logic.

Basic clause structure is understood in terms of a binary division of the clause into subject (noun phrase NP) and predicate (verb phrase VP).

It was shown that such rules could be extended for analyzing compounds as well as derivational morphology for Sanskrit.
Constituency Grammars: Example

S

VP

NP

NP

JJ

NN

VBD

JJ

NP

NN

IN

NP

JJ

NNS

PU

Economic news had little effect on financial markets.
Basic ideas for the dependency relations come from the *kāraka* relations in *Pāṇini*’s grammar.

A dependency parse is modeled as a directed tree with nodes representing the words and edges representing the possible relations between them.
Motivation

Main Objective
Do constituency structures preserve information about dependency relation between words?

Our Hypothesis
If it does, we can use an algorithm to convert a constituency structure to dependency structure.
Outline

1. Introduction

2. Dataset

3. Methodology

4. Results and Discussions
Origins

- The dataset has its origin in Apte’s student guide.
- The work was initiated in 1986 by Brendan Gillon, who assigned a syntactic parse to the prose exercise sentences from Apte’s Student Guide.
- In 1991, Brendan Gillon transferred the material from a paper format to an electronic format, making revisions.
Example Sentence

Example{3}
Source{1.1.3 (P) <U 4.5.3>} % Apte{7,3}
Parse
[S [INJ haa] [ADV katham]
 [NP1s [NP6 (mahaaraaja<Dazarathasya)] (dharma<daaraa.h)]]
 [VP 0 [NP1 (priya<sakhii) [NP6 me] [NP1 Kauzalyaa]]]]
Gloss{Oh, how is it that the legal wife of King Dazaratha is my
dear friend Kauzalyaa}
% Better: How is my dear friend K, the wife of ...
Comment{copula: covert: predicational: NP1s VP }
Towards Abstract Syntax

- In 2004, Gerard Huet re-engineered the document in order to parse it mechanically.
- He verified its correct syntactic structure after typographical corrections.
- He devised an abstract syntax to formalize this constituency structure.
Abstract Syntax

```python
list Tag_tree.syntax =
[S
 [INJ ("haa", 3); ADV ["katham", 4]];
 NP
 ([Case 1; Role Subject],
 [NP ([Case 6], [N (Compound (Stem <mahaaraaja>, Stem <Dazarathasya>), 5]);
 N (Compound (Stem <dharma>, Stem <daaraa.h>), 6))];
 VP0
 [NP
 ([Case 1],
 [N (Compound (Stem <priya>, Stem <sakhii>), 7));
 NP ([Case 6], [N (Stem <me>, 8))];
 NP ([Case 1], [N (Stem <Kauzalyaa>, 9)])])
 NIL 10])
```
The same dataset was tagged with dependency relations at University of Hyderabad.
Outline

1. Introduction
2. Dataset
3. Methodology
4. Results and Discussions
Notion of ‘head’

- The notion of ‘head’ is very important for both the constituency and dependency structures.
- Each phrase structure has a head, that determines the main properties of the phrase and a head has several levels of projection.
- In a dependency structure, on the other hand, the head is linked to its dependents.
The head of VP is the ROOT node in the dependency tree.
 ▶ If CNJ with 'yadi' is present, then it is the head.
 ▶ If AUX is present, AUX is the head.
 ▶ If PRT with 'iti' is present, then it is the head.
(The later rule is stronger than the previous.)

All the XPs within VP are dependent on the ROOT.

If S is the parent of VP, then all the XPs which are children of S are also dependent on this ROOT.

This definition is used recursively to determine head-modifier relation in the dependency graph.
Example: Constituency Parse
Dislocation information was missing from the tree notations but was provided in the comments.

Parse - original
[S [NP6 (saartha<vaahasya) [NP6 Arthapate.h]]
 [NP1s Vimardaka.h]
 [VP 0 [NP1 [AP1 (bahis<caraa.h)] __ praa.naa.h]]]
Gloss{Vimardaka is the external life of the merchant Arthapati.}
Comment{copula: covert: predicational: NP1s VP
left extraposition from VC (pred NP) of NP6 within MC.
apposition}
We used ‘!’ and ‘$’ to indicate the dislocation.

‘!’ indicates the position from where a component is dislocated,

‘$’ gives the dislocated component.

Parse - original
[S [NP6 (saartha<vaahasya) [NP6 Arthapate.h]]
 [NP1s Vimardaka.h]
 [VP 0 [NP1 [AP1 (bahis<caraa.h)] __ praa.naa.h]]]

Parse - modified
[S [NP6 (saartha<vaahasya) [NP6 Arthapate.h $1]]
 [NP1s Vimardaka.h]
 [VP 0 [NP1 [AP1 (bahis<caraa.h)] !1 praa.naa.h]]]
Handling Dislocations

Parse - modified
[S [NP6 (saartha<vaahasya) [NP6 Arthapate.h $1]]
[NP1s Vimardaka.h]
[VP 0 [NP1 [AP1 (bahis<caraa.h)] !1 praanaa.h]]]

Diagram of the parse: [Diagram of the parse structure]
Some More Examples
Some More Examples

(अस्तिः) कर्त्ता अपूर्वायिकरणम्

न्यायः:

व्यवहारः

समक्षम्

सहित्यः

पण्डितकोशिक्यम्

प्रत्येकम्

उपपत्तं समक्षम्:

प्रत्येकम्

उपपत्तं समक्षम्:

प्रत्येकम्

उपपत्तं समक्षम्:
Outline

1. Introduction
2. Dataset
3. Methodology
4. Results and Discussions
Results

- Evaluation was done by comparing the parses produced by our algorithm with respect to the gold standard dependency graphs.
- We match all the pair of words in the two graphs (i.e. the number of relations)
- Out of 232 cases, we found 97 cases with exact match. For the rest of the cases,
 - In 95 cases, some of the relations do not match.
 - In 40 cases, number of words in dependency and phrase-converted graph are different.
Analysis of Mismatches: Word Mismatch

Other such words: Kadčit, yadyapi, tathāpi, athavā, kathamapi etc.
Parse
[S [ADV tata.h]
 [AC [NP7 dine.su] [PC7 gacchatsu]]
 [GC [NP2 (pak.si<zaavakaan) 1] aakramya]
 [GC [NP2 [E] 1] [NP2 ko.taram] aaniiya]
 [ADV pratyaham]
Gloss{Then, as the days went by, he overpowered the baby birds, took them to his hallow and ate them, day after day.}

Relation between ākramya and ānīya is not marked.
This is also an example, where ellipsis *satsu* is introduced in the dependency.
Questions?

Thank you for your kind attention.