Geeta: Gold Standard Annotated Data, Analysis and its Application

Preeti Shukla
Amba Kulkarni
Devanand Shukl

Department of Sanskrit Studies,
University of Hyderabad,
Hyderabad

20/12/2013
Outline

1. Gold standard data and its advantages
2. Levels of Tagging
3. Methodology
4. Quantitative Analysis of BhG
5. Utility and Conclusion
Gold standard data

When a corpus is manually annotated at various levels, such as Tree bank annotation, Discourse level annotation, etc., then it serves as a gold standard data for evaluation and comparison of various tools. This has the following advantages –
Advantages

1. One can use the gold standard annotated data as an input for the evaluation of various modules. This avoids the cascading effects and one can measure the absolute performance of various tools.

2. To use data-driven models to tune the machine for better performance in a chosen domain. For eg., Penn Tree bank.
Advantages

1. One can use the gold standard annotated data as an input for the evaluation of various modules. This avoids the cascading effects and one can measure the absolute performance of various tools.

2. To use data-driven models to tune the machine for better performance in a chosen domain. For eg., Penn Tree bank
Śrīmad Bhagvad Gītā

We chose Śrīmad Bhagvad Gītā (BhG for short) consisting of 18 chapters and 700 verses (ślokas) for developing a gold standard data for Sanskrit text mainly because:

- It is an important text which summarizes the Upanishadic teachings and is commented upon and interpreted by various schools of Indian philosophies. Thus annotators in doubt can always refer to these commentaries for correct annotation.
This scripture being coherent and complete in itself, can be used for higher level analysis such as discourse analysis, topic identification, anaphora resolution, and so on.
Further, this also being part of the Mahābhārata (section 25 to 42 of the Bhīṣma parva), later on if necessary, it can be used as an initial training data for boot-strapping for automatic annotation of complete critical edition of Mahābhārata (with around hundred thousand verses).
Sanskrit requires the following levels of tagging viz.,

1. Annotation of Sandhi
2. Tagging of Compounds
3. Morphological Analysis
4. Tagging of Sentential relations
5. Marking the Prose order
Sanskrit requires the following levels of tagging viz.,

1. Annotation of Sandhi
2. Tagging of Compounds
3. Morphological Analysis
4. Tagging of Sentential relations
5. Marking the Prose order
Sanskrit requires the following levels of tagging viz.,

1. Annotation of Sandhi
2. Tagging of Compounds
3. Morphological Analysis
4. Tagging of Sentential relations
5. Marking the Prose order
Sanskrit requires the following levels of tagging viz.,

1. Annotation of Sandhi
2. Tagging of Compounds
3. Morphological Analysis
4. Tagging of Sentential relations
5. Marking the Prose order
Sanskrit requires the following levels of tagging viz.,

1. Annotation of Sandhi
2. Tagging of Compounds
3. Morphological Analysis
4. Tagging of Sentential relations
5. Marking the Prose order
Levels of Tagging

Annotation of Sandhi

The first level of tagging needed for Sanskrit is the marking of word boundaries undoing the sandhi (euphonic changes). We split two types of sandhis –

1. sandhi between two words which is indicated by a ‘+’ sign
2. sandhi between the components of a compound is indicated by a ‘-’ sign
Annotation of Sandhi

The first level of tagging needed for Sanskrit is the marking of word boundaries undoing the sandhi (euphonic changes). We split two types of sandhis –

1. sandhi between two words which is indicated by a ‘+’ sign
2. sandhi between the components of a compound is indicated by a ‘-’ sign
BhG 2.40 –

nehābhikramanāśo’asti pratyavāyo na vidyate|
svalpamapyasya dharmasya trāyate mahato bhayāt

Eng: In this path there is no loss of effort, nor is there any adverse result. Even a little practice of this discipline protects one from great fear (of birth and death).
Verse tokenized as

\textit{na+iha+abhikrama-nāśaḥ+asti pratyavāyaḥ+na vidyate|svalpam+api+asya dharmasya trāyate mahataḥ+bhayāt|}
Tagging of Compounds

Sanskrit compounds are broadly classified as follows:

1. endo-centric / adverbial (tatpuruṣaḥ / avyayībhāvaḥ)
2. exo-centric (bahuvrīhiḥ)
3. copulative (karmadhārayaḥ)
4. conjunctive (dvandvaḥ)

These compounds with an exception of dvandva (conjunctive) and bahuvrīhi (exocentric) are binary.
Tagging of Compounds

Sanskrit compounds are broadly classified as follows:

1. endo-centric / adverbial (tatpuruṣaḥ / avyayībhāvaḥ)
2. exo-centric (bahuvrīhiḥ)
3. copulative (karmadhārayaḥ)
4. conjunctive (dvandvaḥ)

These compounds with an exception of dvandva (conjunctive) and bahuvrīhi (exocentric) are binary.
Tagging of Compounds

Sanskrit compounds are broadly classified as follows:

1. endo-centric / adverbia (tatpurusah / avyayibhava)
2. exo-centric (bahuvrishi)
3. copulative (karmadharaya)
4. conjunctive (dvandva)

These compounds with an exception of dvandva (conjunctive) and bahuvrishi (exocentric) are binary.
Tagging of Compounds

Sanskrit compounds are broadly classified as follows:

1. endo-centric / adverbial (tatpuruṣaḥ / avyayībhāvaḥ)
2. exo-centric (bahuvrīhiḥ)
3. copulative (karmadhārayaḥ)
4. conjunctive (dvandvaḥ)

These compounds with an exception of dvandva (conjunctive) and bahuvrīhi (exocentric) are binary.
The meaning of a compound is decided by the way the components are combined together. A compound with 3 components a-b-c may be combined in two different ways viz.,

- \(<\langle a-b\rangle-c\rangle\>
- \(<a-\langle b-c\rangle\rangle\)
Example

The compound word *dehāntaraprāptiḥ* in BhG 2.13 is combined as

\[<<a-b>-c>\]

anyāḥ dehaḥ – *dehāntaram*

Gloss: transference_of_the_body

dehāntarasya prāptiḥ – *dehāntaraprāptiḥ*

Gloss: attainment_of_transference_of_the_body
The compound word *dehāntaraprāptiḥ* in BhG 2.13 is combined as

\[
\text{\textless\textless a-b\textgreater\textless-c>}
\]

anyaḥ dehaḥ – *dehāntaram*

Gloss: transference_of_the_body

dehāntarasya prāptiḥ – *dehāntaraprāptiḥ*

Gloss: attainment_of_transference_of_the_body
Various stages

Kumar et al., (2010) describe various stages involved in the analysis of a compound which also form the natural modules of a compound processor –

1. Segmentation (समासपदाच्छेदध)
2. Constituency Parsing (समासपदान्वयाः)
3. Compound Type Identification (समासपदापरिचायाकाः)
4. Paraphrasing (विग्रह-वाक्यम)

A hierarchical tagset of 55 tags has been designed to tag the Sanskrit compounds.
Various stages

Kumar et al., (2010) describe various stages involved in the analysis of a compound which also form the natural modules of a compound processor –

1. Segmentation (samāsapadacchedadāh)
2. Constituency Parsing (samāsapadānvayaḥ)
3. Compound Type Identification (samastapadaparicāyakaḥ)
4. Paraphrasing (vigraha-vākyam)

A hierarchical tagset of 55 tags has been designed to tag the Sanskrit compounds.
Kumar et al., (2010) describe various stages involved in the analysis of a compound which also form the natural modules of a compound processor –

1. Segmentation (śamāsapadacchedadadh)
2. Constituency Parsing (śamāsapadānvayaḥ)
3. Compound Type Identification (samastapadaparicāyakaḥ)
4. Paraphrasing (vigraha-vākyam)

A hierarchical tagset of 55 tags has been designed to tag the Sanskrit compounds.
Various stages

Kumar et al., (2010) describe various stages involved in the analysis of a compound which also form the natural modules of a compound processor –

1. Segmentation (समासपदाच्छेदद्ध)
2. Constituency Parsing (समासपदान्वयाः)
3. Compound Type Identification (समासपदापरिचयाकाः)
4. Paraphrasing (vigraha-vākyam)

A hierarchical tagset of 55 tags has been designed to tag the Sanskrit compounds.
Morphological Analysis

At this stage tagging of both the inflectional as well as derivational information is needed. e.g.,
The morph of the verb ‘asti’ (to be) is

\[
\text{V as2\{active;laṭ;1st;sg;parasmaipadī;asaz;adādiḥ\}}
\]
Tagging of Sentential relations

In order to interpret the meaning of a sentence, various relations among words are necessary. Of around 90 relations classified by Ramakrishnamacharyulu (2009), only around 35 relations based on syntactico-semantic information available in a sentence are considered for automatic tagging.
Marking the Prose order

For understanding a Sanskrit text in verse style, two different methods have been followed in Indian education system viz.,

Daṇḍānvaya (also known as anvayamukhī)

The teacher arranges all the words in prose order for easy understanding of a verse.
This approach assumes that if a user is given the ‘default prose order’ of the sentence, he ‘understands’ its meanings.
Example

BhG 4.8 –

paritrāṇāya sādhūnāṃ vināshāya ca duṣkṛtām|
dharmasaṃsthāpanārthāya sambhavāmi yuge yuge||

Anvaya: aham sādhūnāṃ paritrāṇāya duṣkṛtām vināshāya dharmasaṃsthāpanārthāya ca yuge yuge sambhavāmi

Eng: I appear from time to time for protecting the good, for transforming the evil-minded, and for establishing world order (Dharma).
Khaṇḍānvaya (also known as kathambhūtinī)
The teacher gives the basic skeleton of a sentence and fills in other details by asking questions which are centered around the heads seeking their various modifiers. This approach is close to parsing a sentence showing various dependency relations.
The default word order or the ‘canonical form’ is governed roughly by the following verse:

```
samāsacakram kā.verse 10
viśeṣaṇam puraskṛtya viśeṣyam tad-lakṣaṇam |
kartṛ-karma-kriyā-yuktam etad anvaya-lakṣaṇam ||
```

gloss: Starting with the adjectives, targeting the headword, in the order of kartṛ-karma-kriyā (subject-object-verb) gives an anvaya.
Example – BhG 2.40

<seg type="pāda">
 <euphonic-word no="1"> nehābhikramanāśo’sti
 <word no="1" prose word order_no="3"> na
 <mo_anal> na{ind} </mo_anal>
 <syntactic_rel> mod 4 </syntactic_rel>
 </word>
 <word no="2" prose word order_no = "1"> iha
 <mo_anal> iha{ind} </mo_anal>
 <syntactic_rel> loc 4 </syntactic_rel>
 </word>
</seg>
abhikramanāśaḥ

<compound label="T6">
<component no="1"> abhikrama </component>
<component no="2"> nāśaḥ
<mo_anal> nāśa{masc}{nom;sg} </mo_anal>
</component>
</compound>

<syntactic_rel> subj 4 </syntactic_rel>

asti

<mo_anal>
as2{active;laṭ;1st;sg;parasmaipadī;asaz;adādiḥ} </mo_anal>
</word>
</euphonic-word>
</seg>
</l>
The process for semi-automatic tagging of BhG is as follows:

- The verse form is converted into prose form.
Initially the sandhi and compound in the verse are segmented manually, following the guidelines developed by the SHMT consortium \(^1\). Then each compound is tagged for its type, along with the complete constituency mark-up.

\(^1\) This is the Consortium of 7 institutes, for ‘Development of Sanskrit-Hindi Machine Translation System (sampark)’ funded by DIT, Govt. of India
The segmented words are run in the anusāraka interface \(^2\) for obtaining the multiple morph analysis. The output generated as an xml file, is then manually pruned for choosing the correct morph analysis in the context.

\(^2\)http://sanskrit.uohyd.ernet.in/scl
The synactico-semantic relations are tagged manually, following the guidelines developed by the SHMT consortium \(^3\).

\(^3\)http://sanskrit.uohyd.ernet.in/scl/Corpus/TaggingGuidelines/kaaraka-tagging-guidelines
Hindi and English glosses for each word are given manually. For this we followed *Geeta Press* \(^4\).
Compound Distribution

<table>
<thead>
<tr>
<th>Compound-type</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocentric</td>
<td>994</td>
</tr>
<tr>
<td>Exocentric</td>
<td>390</td>
</tr>
<tr>
<td>Copulative</td>
<td>163</td>
</tr>
<tr>
<td>Conjunctive</td>
<td>144</td>
</tr>
</tbody>
</table>
Morphological statistics:

<table>
<thead>
<tr>
<th>multiple morph count</th>
<th>words</th>
<th>multiple morph count</th>
<th>words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5280</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>1570</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>1082</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>349</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>292</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>99</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Total words</td>
<td></td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8884</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.90</td>
</tr>
</tbody>
</table>
Case Statistics in Geeta

<table>
<thead>
<tr>
<th>case</th>
<th>singular</th>
<th>dual</th>
<th>plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom.</td>
<td>2463</td>
<td>31</td>
<td>613</td>
</tr>
<tr>
<td>acc.</td>
<td>1349</td>
<td>20</td>
<td>251</td>
</tr>
<tr>
<td>instr.</td>
<td>266</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>dat.</td>
<td>57</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>abl.</td>
<td>116</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>gen.</td>
<td>335</td>
<td>24</td>
<td>179</td>
</tr>
<tr>
<td>loc.</td>
<td>273</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>voc.</td>
<td>251</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Case-Number distribution in context

<table>
<thead>
<tr>
<th>case</th>
<th>singular</th>
<th>dual</th>
<th>plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom.</td>
<td>864</td>
<td>29</td>
<td>501</td>
</tr>
<tr>
<td>acc.</td>
<td>733</td>
<td>20</td>
<td>103</td>
</tr>
<tr>
<td>instr.</td>
<td>78</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>dat.</td>
<td>29</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>abl.</td>
<td>53</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>gen.</td>
<td>222</td>
<td>24</td>
<td>98</td>
</tr>
<tr>
<td>loc.</td>
<td>155</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>voc.</td>
<td>80</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>2014</td>
<td>74</td>
<td>795</td>
</tr>
</tbody>
</table>
Quantitative Analysis of BhG

syntactico-semantic relations in Geeta

<table>
<thead>
<tr>
<th>relation</th>
<th>freq</th>
<th>relation</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>viṣeṣaṇa (adjective)</td>
<td>1277</td>
<td>kartā (subject)</td>
<td>1256</td>
</tr>
<tr>
<td>conjunctive</td>
<td>1155</td>
<td>karma (object)</td>
<td>924</td>
</tr>
<tr>
<td>predicative adj</td>
<td>401</td>
<td>adhikaraṇa (locative)</td>
<td>358</td>
</tr>
<tr>
<td>ṣaṣṭhi (genitive)</td>
<td>357</td>
<td>negation</td>
<td>242</td>
</tr>
<tr>
<td>emphatic</td>
<td>275</td>
<td>sambodhana (vocative)</td>
<td>237</td>
</tr>
<tr>
<td>precedence</td>
<td>194</td>
<td>adverb</td>
<td>194</td>
</tr>
<tr>
<td>karaṇa (instrument)</td>
<td>130</td>
<td>karma-</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sāmānidhikaraṇa</td>
<td></td>
</tr>
<tr>
<td>hetu (causal)</td>
<td>96</td>
<td>co-relative</td>
<td>82</td>
</tr>
<tr>
<td>apādāna (source)</td>
<td>75</td>
<td>sarvanāma (pronouns)</td>
<td></td>
</tr>
<tr>
<td>prayojana (purpose)</td>
<td>52</td>
<td>vākya-karma</td>
<td>64</td>
</tr>
<tr>
<td>sampradāna (dative)</td>
<td>15</td>
<td>simultaneity</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disjunction</td>
<td>10</td>
</tr>
</tbody>
</table>
Quantitative Analysis of BhG

Tense-Mood distribution in Geeta

Sanskrit has 10 lakāras which represent Tense-Modality.

<table>
<thead>
<tr>
<th>lakāra</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>laṭ (Present)</td>
<td>355</td>
</tr>
<tr>
<td>loṭ (Imperative)</td>
<td>72</td>
</tr>
<tr>
<td>lṛṭ (Second future)</td>
<td>42</td>
</tr>
<tr>
<td>vidhiliṅ (Potential)</td>
<td>40</td>
</tr>
<tr>
<td>laṅ (Imperfect)</td>
<td>26</td>
</tr>
<tr>
<td>liṭ (Perfect)</td>
<td>22</td>
</tr>
<tr>
<td>luṭ (First future)</td>
<td>16</td>
</tr>
<tr>
<td>luṅ (Aorist)</td>
<td>9</td>
</tr>
<tr>
<td>āśīrliṅ (Optative)</td>
<td>6</td>
</tr>
<tr>
<td>lṛṅ (Conditional)</td>
<td>1</td>
</tr>
</tbody>
</table>

Refer DSP P. Shukla, A. Kulkarni, D. Shukl (UoHyd) Geeta 34 / 45 20/12/2013
Utility

There are three important usages of this gold data viz.,

1. for NLP applications
2. as linguistic inputs for developing a domain specific primer for learning BhG
3. with the suitable interface, a self-learning / reading tool for BhG.
There are three important usages of this gold data viz.,

1. for NLP applications
2. as linguistic inputs for developing a domain specific primer for learning BhG
3. with the suitable interface, a self-learning / reading tool for BhG.
Utility

There are three important usages of this gold data viz.,

1. for NLP applications
2. as linguistic inputs for developing a domain specific primer for learning BhG
3. with the suitable interface, a self-learning / reading tool for BhG.
Utility and Conclusion

NLP applications

• serves as a gold standard for evaluation of various Sanskrit tools.
• for developers of NLP tools.
• in prioritizing the solutions in the case of ambiguities.
NLP applications

- serves as a gold standard for evaluation of various Sanskrit tools.
- for developers of NLP tools.
- in prioritizing the solutions in the case of ambiguities.
NLP applications

- serves as a gold standard for evaluation of various Sanskrit tools.
- for developers of NLP tools.
- in prioritizing the solutions in the case of ambiguities.
NLP applications

- serves as a gold standard for evaluation of various Sanskrit tools.
- for developers of NLP tools.
- in prioritizing the solutions in the case of ambiguities.
Domain Specific Primer

The quantitative analysis can help a teacher to decide which aspect of Sanskrit Grammar is more relevant for the study of BhG as follows:

1. postponing the teaching of dual forms to a later stage.
2. deciding how many and which paradigms of noun declension to concentrate on first.
3. using the analysed data of Tense-Modality to decide which lakāras to teach and which conjugation classes to concentrate on first.
4. deciding on which type of compound to teach first based on the compound distribution table.
Domain Specific Primer

The quantitative analysis can help a teacher to decide which aspect of Sanskrit Grammar is more relevant for the study of BhG as follows:

1. postponed the teaching of dual forms to a later stage.
2. deciding how many and which paradigms of noun declension to concentrate on first.
3. using the analysed data of Tense-Modality to decide which lakāras to teach and which conjugation classes to concentrate on first.
4. deciding on which type of compound to teach first based on the compound distribution table.
Self Learning cum Reading Tool

With the help of a suitable interface such as that of anusāraka, an interested reader can have complete analysis of BhG at various levels. The interface provides –
User controlled access to various levels of analysis (Figs. 1,2,3). The graphs showing the constituency information and the kāraka relations are generated automatically from the manually tagged data.

Figure: 1. compound analysis of BhG 2.40
Figure: 2. kāraka analysis of BhG 2.40
Utility and Conclusion

Figure: 3. morph analysis of BhG 2.40

<table>
<thead>
<tr>
<th>1.1.A</th>
<th>iha</th>
<th>abhikrama-nāśah</th>
<th>na</th>
<th>asti</th>
<th>pratyāvāyah</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.B</td>
<td>iha (avaya)</td>
<td>abhikrama-nāśa (pum) {1;eka}</td>
<td>na (avaya)</td>
<td>as2 (karti;lat;pra;eka;parasmai;asa;adādiḥ)</td>
<td>pratyāvāya (pum) {1;eka}</td>
<td>na (avaya)</td>
</tr>
<tr>
<td>1.1.C</td>
<td>isa_karmayoga_mem</td>
<td>ārambhakā arthāt bijakā nāśā</td>
<td>nahīm</td>
<td>hai</td>
<td>ulatā phala kā dośa</td>
<td>na</td>
</tr>
<tr>
<td>1.1.D</td>
<td>in this world</td>
<td>endeavoring loss</td>
<td>not</td>
<td>is</td>
<td>diminution</td>
<td>never</td>
</tr>
</tbody>
</table>

vidyate	asya	dharmasya	svalpa	api
vid2 (karti;lat;pra;eka;atmane;vid;divādiḥ)	idam (pum) {6;eka}	dharma (pum) {6;eka}	svalpa (napum) {1;eka}	api (avaya)
hai	isa_karmayogarupa	dharma kā	thoḍā-sā	bhi (sādhana janma-mṛtyurupa)
is	of this	of this occupation	a little	although

mahataḥ	bhayāt	trāyate
mahat (napum) {5;eka}	bhaya (napum) {5;eka}	trail (karti;lat;pra;eka;atmane;train;bhavādiḥ)
mahān	bhayase	fakṣa_kara_leta_hai
of very great	danger	releases

anyva file
- Link to various dictionaries for meanings of the head words.
- Graphical display of phrase structure analysis of compounds (Fig 4).

Figure: 4. Compound analysis of a word from BhG 12.17
- Graphical display of sentential analysis (Fig 5).

Figure: 5. Dependency graph of BhG 2.40
This provides the user a digitized learning and understanding environment and forms a basis for the theoretical linguists and grammarians to test their theories as well.
धन्यवाद:!!!