Mathematical Modeling of Ākāṅkṣā and Sannidhi for Parsing Sanskrit

Amba Kulkarni, Devanand Shukl, and Sheetal Pokar

Department of Sanskrit Studies,
University of Hyderabad,
Hyderabad

15th World Sanskrit Conference, Delhi
6th Jan., 2012
Outline

Śābdabodhaḥ

Factors useful for Śābdabodhaḥ

Computational Perspective

Mathematical Model

Implementation
Śābdabodhaḥ

Śābdabodhaḥ is an understanding that arises from a linguistic utterance.

Three schools of Śābdabodha: vyākaraṇa, nyāya and mīmāṁsā

Main Difference: mukhya-viśeṣya (chief qualificand / Head)
The process of Śābdabodha involves parsing or vākyaviśleṣaṇam as one of the steps.

Parsing: A process of analysing a text to determine its grammatical structure and syntactic relations between various units.
Non-determinism in Parsing

Grammar typically specifies rules for generation.

Analysis is an inverse process.

Inverse process may involve non-determinism.
Consider for example the following two sūtras:

- anabhihite (2.3.1)
- kartṛkaraṇayos tṛtīyā (2.3.18)
Consider for example the following two sūtras:

- anabhihite (2.3.1)
- kartṛkaraṇayos tṛtiyā (2.3.18)

While generating a sentence using these two rules, there is no non-determinism.
Consider for example the following two sūtras:

- anabhihite (2.3.1)
- kartṛkaraṇayos tṛtiyā (2.3.18)

While generating a sentence using these two rules, there is no non-determinism.

vaktrṛ vivakṣā

hanana: kriyā
rāma: kartā
bāṇa: karaṇa
vālī: karma
voice: passive

vibhakti = f(dhātu, voice, kāraka)
Consider for example the following two sūtras:

- anabhihite (2.3.1)
- kartṛkaraṇayos tṛtiyā (2.3.18)

While generating a sentence using these two rules, there is no non-determinism.

vaktrṭ vivakṣā

hanana: kriyā
rāma: kartā
bāṇa: karana
vālii: karma
voice: passive

vibhakti = f(dhātu, voice, kāraka)

rāmeṇa bāṇena vāliḥ hanyate
However, given a sentence,

रामेना बाणेना वालिः हयंयते.

the analysis may lead to non-determinism as follows:

रामा और बाणा, दोनों ३०वे वर्ग मे हैं, और इसलिए दोनों को कर्ता और कराणा के कृती के लिए उ०योगी उपकरण हैं।

World Knowledge or yogyatā decides the appropriate role for each of them.
Factors useful for Śābdabodhaḥ

- ākāṅkṣā
- yogyatā
- tātparya
- sannidhi
Literally it means ‘desire’ on part of the listener (jijñāsā).
Ākāṅkṣā

Literally it means ‘desire’ on part of the listener (jijnāsā). Is it Psychological or Syntactic?
Literally it means ‘desire’ on part of the listener (jijnāsā).
Is it Psychological or Syntactic?
Naiyāyikas: Syntactic
\[dvāram = dvāra + \text{am} \]

‘am’ has an expectancy.
dvāram = dvāra + am
‘am’ has an expectancy.
This expectancy is not one way, but mutual.
The requirement of a karma in a verb such as ‘pidhehi’ is based on the usage of a verb.
sannidhi

Tarkasa.ngraha

padānām avilambena uccaṟaṇam,
utterance of words without any gap,
sannidhi

Tarkasa.ngra ha

padānām avilambena uccāraṇam,
utterance of words without any gap,

avyavadhānena padajanya padārthopasthitiḥ
the presentation of word meanings without any intervention.
Viśvanātha Pañcānan in Nyāyakusumāñjali gives the following examples

Example 1:

girīḥ bhuktam agnimāňn devadattena

gloss: hill is_eaten fiery by_Devadatta
Example 2:

\textit{nīlo ghaṭaḥ dravyamī pataḥ}

gloss: blue pot matter cloth

Two cognitions:

- The pot is blue and the cloth is a matter.
 \textit{nīlo ghaṭaḥ dravyamī pataḥ}

- The cloth is blue and the pot is a matter.
 \textit{nīlo ghaṭaḥ dravyamī pataḥ}
Computational Perspective

What is a parse?
A dependency parse: a tree
Words: nodes
Relations: labelled directed edges
Starting point?
To start with should we assume that potentially every word is related to every other word?
Starting point?
To start with should we assume that potentially every word is related to every other word?

No.
Starting point?
To start with should we assume that potentially every word is related to every other word?

No.

Ākāṅkṣā constraints the initial number of edges.
Clues for possible relations:

- abhihitatva
- vibhakti
- avyaya
- samānādhikaraṇa
- Tiṅantas (sakarmaka, akarmaka, any special kāraka requirement)
Clues for possible relations

abhihitatva

tīṇ, kṛt, taddhita, samāsa

rāmaḥ vanam gacchati
rāmeṇa vanaṁ gamyate
Clues for possible relations

vibhaktiḥ: n-v / n-n
Clues for possible relations

vibhaktih: n-v / n-n

upapadavibhaktih and upapadam: n-n / n-v
rāmeṇa saha sītā vanaṁ gacchati.
grāmaṁ paritaḥ vṛksāḥ santi.
Clues for possible relations

vibhaktiḥ: n-v / n-n

upapadavibhaktiḥ and upapadam: n-n / n-v
rāmeṇa saha sītā vanaṁ gacchati.
grāmaṁ paritaḥ vṛkṣāḥ santi.

avyayas: a -> v / a -> n

rāmaḥ eva sundaraḥ
rāmaḥ na gacchati
Clues for possible relations

samānādhikaraṇa:

śvetaḥ aśvaḥ dhāvati.

aśvaḥ śvetaḥ asti.
Which relations: Explicit or Implicit

Which relations to represent – Explicit or Implicit?

samānakartṛkayoḥ pūrvakāle (3.4.21)

ktvā marks pūrvakālinatva or kartṛtva or both?

rāmaḥ dugdham pītvā śālāṃ gacchati.
Explicit(abhihita) or Implicit(ākṣipta)

Bhartṛhari in Vākyapadīyam states (3.7.81-82),

pradhānetayor yatra dravyasya kriyayoh pṛthak śaktir guṇāṣrayā tatra pradhānam anurudhyate 3.7.81 pradhānaviṣayā śaktiḥ pratyayenābhidhīyate yadā guṇe tadā tadvad anuktāpi prakāśate 3.7.82

i.e., in case X is an argument of both the main verb as well as the subordinate verb, it is the main verb which assigns the case and the relation of X to the sub-ordinate verb gets manifested even without any other marking.
Explicit(abhihita) or Implicit(ākṣipta)

rāmaḥ dugdham pītvā śālām gacchati.
rāmeṇa dugdham pītvā śālā gamyate.
Factors useful for Śabdabodhaḥ

Computational Perspective

Mathematical Model

Implementation

Mathematical Modeling of Ākāṅkṣā and Sannidhi for Parsing Sanskrit

Department of Sanskrit Studies, University of Hyderabad, Hyderabad
Sannidhi (Proximity)

giriḥ bhuktam agnimān devadattena
Sannidhi (Proximity)

giriḥ bhuktam agnimān devadattena
No crossing of edges
Sannidhi (Proximity)

rāmaḥ grāmam gatvā prāsādam paśyati.
<table>
<thead>
<tr>
<th>Sābdabodhaḥ</th>
<th>Factors useful for Śābdabodhaḥ</th>
<th>Computational Perspective</th>
<th>Mathematical Model</th>
<th>Implementation</th>
</tr>
</thead>
</table>

Sannidhi (Proximity)

Suggested by Staal (1967) and further worked out by Gillon (1993).
Ākāñksā: To draw the potential edges between nodes.
Sannidhiḥ: To forbid crossing of edges.
Words: nodes, and
Relations: directed labelled edges.

Given a Graph G with n nodes, the task is to find a sub-graph T which is a directed Tree.\[1\]

\[1\] A tree is a graph in which any two vertices are connected by exactly one simple path.
We divide the problem into three subtasks:

1. Task 1: For a given sentence, draw all possible labeled directed edges among the nodes. (ākāṅkṣā)

2. Task 2: Identify a sub-graph T of G such that T is a directed Tree which satisfies the given constraints. (ākāṅkṣā, sannidhiḥ)

3. Task 3: Prioritize the solutions, in case there is more than one possible directed Tree. (sannidhiḥ)
Mathematical representation

Representation: 5 dimensional Matrix.

\[C[i,j,k,l,m] \]

- \(i \): \(i^{th} \) word
- \(j \): \(j^{th} \) analysis of \(i^{th} \) word
- \(k \): Relation
- \(l \): \(i^{th} \) word
- \(m \): \(m^{th} \) analysis of \(l^{th} \) word
Task 1:

Using abhihitatva, vibhakti, sāmānādhikaranaṇya, and the expectancies the matrix C is populated with 0s and 1s.
Task 1:

\[rāmaḥ \ vanaṁ \ gacchati. \]

Morphological Analysis:

[1, 1]: rāma \{\text{gender}=m, \text{case}=1, \text{number}=sg\},

[1, 2]: rā \{\text{gaṇaḥ}=adādi, \text{lakāra}=laṭ, \text{person}=1, \text{number}=pl, \text{prayogaḥ}=kartari, \text{parasmaipadī}\}.

[2, 1]: vana \{\text{gender}=n, \text{case}=1, \text{number}=sg\},

[2, 2]: vana \{\text{gender}=n, \text{case}=2, \text{number}=sg\}.

[3, 1]: gam \{\text{lakāra}=laṭ, \text{person}=3, \text{number}=sg, \text{voice}=active, \text{parasmaipadī}\},

[3, 2]: gacchat (gam śatṛ) \{\text{gender}=m, \text{case}=1, \text{number}=sg\},

[3, 3]: gacchat (gam śatṛ) \{\text{gender}=n, \text{case}=1, \text{number}=sg\}.
Factors useful for Sādabdahah.

Computational Perspective

Mathematical Model

Implementation

Mathematical Modeling of Ākāṅkṣā and Sannidhi for Parsing Sanskrit
Task 2:

In order to get a Tree from this graph, we impose the following constraints.

1. A vibhaktiḥ marks only one relation.
 I.e., a node can have one and only one incoming arrow.
 \[\sum_{j,R,k,l} C[i,j,R,k,l] = 1, \forall i. \]

2. Each kāraka relation is marked by a single morpheme.
 There can not be more than one outgoing arrow with the same label from the same cell, if the relation marks a kāraka relation,² i.e.
 there can not be two words satisfying the same kāraka role of the same verb.
 \[\sum_{i,j} C[i,j,R,k,l] = 1, \text{ for each tuple } (R,k,l). \]

²adhikaraṇam is treated as an exception since one can have more than one adhikaraṇam as in rāmaḥ adya pañca vādane gṛham agacchat.
1. A morpheme does not mark a relation to itself. A word can't satisfy its own expectancy. i.e. a word can't be linked to itself3. Or there can not be self loops in a graph.
\[\sum_{j,R,k} C[i,j,R,i,k] = 0, \forall i. \]

2. Only one valid analysis for every word per solution
 2.1 If a word has both an incoming arrow as well as an outgoing arrow, they should be through the same cell.
\[\forall i \forall j \sum_{R,l,n} C[i,j,R,l,n] + \sum_{a,b,R,k!j} C[a,b,R,i,k] \leq 1. \]
 2.2 If there is more than one outgoing arrow through a node, then it should be through the same cell.
\[\text{if, for some } i,j,R,l,m \ C[i,j,R,l,m] = 1, \]
\[\text{then } \forall a \forall b \forall R \sum_{a,b,R,k!j} C[a,b,R,l,k] = 0. \]

3. All the words in a sentence should be connected.

4. There is no crossing of links
 If all the nodes are plotted in a straight line, then they should not intersect each other. i.e.,
 if \(C[i,j,R,k,l] = 1 \), then
 \[\forall v \forall y C[u,v,w,x,y] = 0, \text{ if } i < x < k \text{ and } u < i \text{ or } u > k. \]

3 in case of some of the taddhita suffixes which are in svārtha, there will be self loops. But we do not consider the meaning of taddhita suffixes in the first step, and thus can avoid the self loops.
The resultant graph is a Tree provided:

1. It is connected.
2. It has n-1 edges.
Task 3:

The solutions are prioritized using the conditions specified below.

For each of the solutions, the cost is calculated as

\[
\text{Cost} = \sum_{i,R,j} c_{iRj}, \text{ where }
\]

i) \(c_{iRj} = |j - i| \times wt_R \), if \(C[i, a, R, j, b] = 1 \) for some \(a \) and \(b \).

\(= 0 \) otherwise.

ii) \(wt_R = \text{rank}(R) \)
This cost ensures the following:

1. ākāṅkṣā (kāraka relation) is preferred over other relations (rank of the relations takes care of this.).

2. The ranking of the solutions on the basis of distance-based weights takes care of sannidhiḥ.
Implementation

Modularity

The first task demands the inputs from grammar,

whereas the second and the third tasks are purely mathematical ones, which can be handled by a constraint solver.

The separation of tasks into three sub-tasks makes it not only modular, but also easy for a grammarian to test his/her rules independently.
Implementation

First task is implemented using an expert shell CLIPS

Second task uses a constraint solver MINION.

The system is available at
http://sanskrit.uohyd.ernet.in/scl/SHMT/shmt.html

Main purpose of this exercise is to have a proof of the concept.
Performance

113 sentences with single finite verb.
Sentence length 2 to 14 words.

Manual tagging for testing

- 97 (86%) sentences had the first parse correct.
- 16 (14%) sentences had one relation wrong.
 - wrong label: 10
 - wrong attachments: 3
 - wrong label and wrong attachments: 3
Diagnosis

Reasons for wrong analysis:

- Fine grain / Coarse grain distinction
 - adhikaraṇa / deśādhikaraṇa / kālādhikaraṇa
 - mukhya karma / gauṇa karma
 - hetu / karaṇa
- verbs in the curādi (10th) gaṇa.
Diagnosis

Upapada a function word (dyotaka) or a content word (vācaka)?

Figure: saha-function

Figure: saha-content
Diagnosis

Need to have dictionaries rich with semantic content

The second case suffix denotes the meaning of

- kriyāviśeṣaṇa (manner)
- kāla (time)
- adhvan (path)
- karma

For disambiguation, one should appeal to yogyatā.
Real Text Challenges

Since the parser does the analysis ‘mechanically’, it detects the problems of ‘violation’ of the rules more easily.

\[\text{guhena laksma{nena sittaya ca sahitah rama{h vanena vanam gatv\textcircled{a} bahudak\textcircled{a} nadih tirthv\textcircled{a} bharadv\textcircled{a}jasya sasan\textcircled{a}t citrak\textcircled{u}\textcircled{t}am anuprapya vane ramam avasatham k\textcircled{r}tv\textcircled{a} devagandharvasa\textcircled{k\textcircled{a}\textcircled{s}\textcircled{a}\textcircled{h} te trayah ramam\textcircled{a}n\textcircled{a}\textcircled{h} sukham nyavasan. (Sam. r\textcircled{a}.:30-32)} } \]
Real Text Challenges

This sentence poses the following problems:

- Whom does the phrase ‘te trayaḥ’ refer to?
- rāmaḥ does not agree with the finite verb nyavasan. Is it not a violation of samānakartṛkayoḥ pūrvakāle?
- Does gatvā precede tīrtvā or nyavasan?
- In case of vanena vanam what should be the meaning of the third case?
<table>
<thead>
<tr>
<th>Sābdabodhaḥ</th>
<th>Factors useful for Sābdabodhaḥ</th>
<th>Computational Perspective</th>
<th>Mathematical Model</th>
<th>Implementation</th>
</tr>
</thead>
</table>

DEMO