
Building a Wide Coverage Sanskrit Morphological Analyzer: A Practical
Approach

Akshar Bharati, Amba Kulkarni, V Sheeba
Rashtriya Sanskrit Vidyapeetha

(Deemed University)
Tirupati

{ambapradeep,v.sheeba}@gmail.com

Abstract

For an inflectionally rich language like
Sanskrit, any NLP application demands
a good morphological analyzer.
Though Sanskrit is the best-analyzed
language in the world, a good coverage
morphological analyzer for it is still not
available. This paper points out the
complexity involved in building a wide
coverage analyzer for Sanskrit and then
describes a morphological analyzer that
has been built using the available e-
resources, based on ad-hoc principles.
The coverage of this analyzer is around
95%. Though for practical applications,
this is not an acceptable figure, it can
however be used as a stepping-stone to
develop other modules such as sandhi
splitter, search engine, etc. At a later
stage, it may be replaced by a module
that is based on the classic aÀt¡dhy¡y¢.

1 Introduction

Morphological analyzer is the basic tool
needed for any NLP applications ranging from
information retrieval, search engines, spell
checkers to MT systems. A morphological
analyzer takes a word (a string separated by
white spaces) as an input and produces its
analysis, showing the root and grammatical
features such as gender, number, person, tense,
aspect, modality, etc. The complexity of rules
for word formation differs from language to
language.
 In the past decade wide coverage morpho-
logical analyzers for different languages were
developed (Karp, 1992; IIIT-H; Vishvanathan
S, 2003). English has the simplest morphology
and hence though 2 level computational mod-
els for word recognition and production were
suggested (koskennieni, 1983), a simple hash
table lookup method was used to build a wide
coverage analyzer (Karp, 1992).

 Among modern Indian languages, Hindi has
the simplest morphology and the complexity
increases as we move from North to South In-
dia, with Dravidian languages having the most
complex morphology. Morphological analyz-
ers for different Indian languages were devel-
oped based on the paradigm model (Bharati
Akshar et al 1995, IIIT-H). A wide coverage
morphological analyzer for Tamil was devel-
oped using FST and the paradigm model
(Vishvanathan et al., 2003).
 Sanskrit has the richest morphology. At the
same time it is the best analyzed language of
all the languages in the world. Since well de-
fined and almost exhaustive rules for word
formation of Sanskrit language exist, one may
think it to be a trivial task to build a morpho-
logical analyzer based on these rules.
 Attempts have been made to develop mor-
phological analyzer for Sanskrit (CDAC; ASR;
Huet, 2003). However either they have limited
coverage or are not available freely, making it
almost unusable for any serious NLP applica-
tions. Another problem is, though well defined
rules for Sanskrit morphology exist, for a typi-
cal computer science person, with no knowl-
edge of Sanskrit, it is difficult to build a sys-
tem incorporating them. At the same time, it is
very rare to get a person who understands the
aÀ¶¡dhy¡y¢ well and also have good knowl-
edge of computer science. Therefore, incorpo-
rating the rules in aÀt¡dhy¡y¢ as it is, is a diffi-
cult task, and may take time to develop such a
system. To implement the rules given in
aÀt¡dhy¡y¢ as they are is further difficult as
there are also controversies over the use of
paribh¡À¡ (meta rules) to interpret the
aÀt¡dhy¡y¢. It is possible that it may give rise
to more than one implementations. If a practi-
cal system to analyze words exists, then such a
system can be used to test the performance of
different systems based on different hypothesis
mechanically.
 If we look at the Sanskrit literature, we see
that there have been many attempts to make
the learning of Sanskrit word formation easier.
The method adopted was a paradigm based

approach where a student is taught the word
forms of a common word e.g. deva in Sanskrit
and further that it is the default paradigm for 'a'
ending masculine words. Further the list of
exceptional words and the forms where they
differ are taught separately. Following this
method, a simple algorithm was developed
which is described in (Bharati Akshar et al.,
1995). This algorithm has been used to de-
velop morph analyzer for different Indian lan-
guages (IIIT-H).

2 Earlier Work

With an initiative from IIIT-H, and initial
working morph analyzer developed at ASR
Melkote (ASR), using lexicon from Monier
William's dictionary (Monier, 1899), first
morphological analyzer based on the paradigm
approach, was developed(Jain, 2004). This
analyzer handled only nouns. This analyzer
though had a lexicon of around 0.1M
pr¡tipadikas, extracted mainly from the Monier-
William's dictionary, had errors since the lexi-
con was extracted by a student who did not
have much knowledge of Sanskrit.
 With this morphological analyzer, as a start-
ing point, authors have taken it further to make
it a full-fledged analyzer with a wide coverage.
Further this is also being made available under
GPL so as to avoid any duplication of work in
future (anus¡rak¡).
 In the following sections, we first discuss the
complexity of word formation in Sanskrit. Sec-
tion four gives a brief outline of available rele-
vant e-resources. In the fifth section we dis-
cuss the practical approach followed to make
the best use of available e-resources and de-
velop a practical system with wide coverage.
Sixth section shows the results on randomly
selected texts.

3 Word Formation in Sanskrit:

The finite state automaton in fig 1 describes
the word formation in Sanskrit. As can be seen
from the figure, theoretically it is possible to
generate infinite forms from a given word.
However, the ability of human mind to process
a complex string puts a limit on these poten-
tially infinite productions to a finite number
and is supported by the actual data.
 In the first k¡nda of r¡mayayana, the longest
derived word had 3 suffixes, (e.g. a kridanta,
followed by a san suffix, followed by sup suf-
fix). Further, for all practical purposes, just as
a human being also does, the intermediate

pr¡tipadikas, or dh¡tus can always be kept in the
lexicon.

 Fig 1 Word Formation in Sanskrit

 The complexity in Sanskrit morphology is
further aggravated because of
-- sandhi formation, and
-- productive sam¡sa formation.

3.1 Sandhi formation
Unlike modern Indian languages, Sanskrit uses
sandhi extensively. Sandhi may be divided into
two categories – external sandhi (rules which
govern the sandhi making of two padas) and
internal sandhi (rules which govern the sandhi
within two segments of a pada). The internal
sandhi rules are used at the morphological
level. But the external sandhi needs to be han-
dled separately. Sanskrit has around 50 alpha-
bets, leading to approximately 2,500 possible
combinations of two alphabets. Out of these
more than 60% involve morphophonemic
changes during sandhi formation. This natu-
rally gives rise to multiple answers during san-
dhi splitting. For example, there are 4 possibili-
ties a character '¡' can be split into:
¡ -> a + a

-> a + ¡
-> ¡ + a
-> ¡ + ¡

and hence the word 'r¡m¡laya' can be split
into 2 words in 8 possible ways viz:
a) ra + am¡laya
b) ra + ¡m¡laya
c) r¡ + am¡laya
d) r¡ + ¡m¡laya
e) r¡ma + alaya
f) r¡ma + ¡laya
g) r¡m¡ + alaya
h) r¡m¡ + ¡laya
 A good coverage morphological analyzer
can rule out half of the possibilities, leaving
the last four. However to rule out these possi-
bilities, one needs to look at the context. This

second task requires a capability in machine to
use the world knowledge and current technol-
ogy still has limitations to handle the world
knowledge.
 Thus we see that a good coverage morpho-
logical analyzer needs a sandhi splitter and a
sandhi splitter requires a good coverage mor-
phological analyzer leading to a deadlock
situation.

3.2 Sam¡sa formation

Another feature that increases the complexity
of Sanskrit word formation is productive
sam¡sa formation. The fig 2 shows different
sam¡sa formations in Sanskrit.

 + +

 + +

 Fig 2

 In case of sam¡sa's the sandhi is a must.
Two texts viz. one prose (pancatantra) and one
poetry (first k¡nda of r¡m¡yayana) were se-
lected for analysis. It was found that around 20
to 25% of the words in these texts were
sam¡sa. It is not possible to list all possible
sam¡sa in the dictionary.

 Thus to have a good coverage morph ana-
lyzer, again one needs a sam¡sa handler, and
in sam¡sa formation sandhi is a must. This
leads to circular dependability.

To break this circularity it was decided to
pre-edit the text manually. The pre-edited text
will have sandhi-splitted words and the
sam¡sa tagged for their components and the
type. With this pre-editing, then the problem
reduces to analyzing simple padas by machine.
4 Available e-resources

Sanskrit is not only well analyzed but also
contains a vast ancillary material in the form

of data bases and dictionaries. Dh¡turatn¡kara,
kridantar£pam¡l¡, v¡caspatyam,
r£pachandrik¡, ¿abdakalpadruma and various
monolingual and bilingual dictionaries are
some of the examples of such data-bases.
These data-bases are meant for humans with
some exposure to grammar to assist them in
understanding texts in different subjects like
Ayurveda, literature, astronomy, etc.
 Dh¡turatn¡kara kosha lists the verb forms
under differnt lak¡ras for all the verbs in the
dh¡tup¡tha. Kridantar£pam¡l¡ gives a list of
high frequency kridanta forms for all the verbs.
V¡caspatyam contains derivation of different
derived roots along with citations.
R£pacandrik¡ gives a list of different default
and exceptional paradigms for all the three
genders covering whole range of nouns and
pronouns in Sanskrit. All these books are
available in e-forms, under Sansk-Net project
(SANSK-NET). However, since these books
are written for humans, there are errors in the
formatting of the text, which typically go un-
noticed by humans (see Appendix A). How-
ever, even a small error of comma produces
wrong results when processed by a machine.
Further, the entries in the book were not uni-
form, they are not in the same order, and also
sometimes, it just carries a note that entries
behave like some other word X. This makes
the task of extracting different forms automati-
cally little difficult. However, with a language
like Perl that has powerful support for regular
expressions, the task is doable.

5 Design of morph analyzer

Separate modules have been developed to
handle subanta, ti´anta and kridanta words. In
what follows we first describe different mod-
ules in morphological analyzer followed by an
algorithm, which integrates all these modules.

5.1 Subanta analyzer

Subanta handler analyses nouns, pronouns,
adjectives, and indeclinables. Nouns, pronouns
and adjectives decline according to number
and vibhakti in Sanskrit. Adjectives in Sanskrit,
unlike English, undergo change in their roots
according to gender. The subanta handler fol-
lows the same algorithm as described in,
(Bharati Akshar et al., 1995) with a small
modification in the algorithm to factor out
common information about the features, so as
to keep the hash table size small. The para-
digms for this approach have been taken from
r£pacandrik¡.

subanta

Subanta

ti´anta

pr¡tipadika

dh¡tu

Subanta

ti´anta

ti´anta

 A list of lexicon is extracted from Monier
William's dictionary and with a simple Perl
program, paradigms have been assigned auto-
matically to each of the lexical head, based on
its ending vowel and gender. Some exceptional
cases need to be handled while assigning a
paradigm. Words with ra in the pr¡tipadika
needed special paradigms, since in this case
the na in suffixes changes ¸a. Separate para-
digms are assigned to these cases. In Sanskrit
adjectives also decline like nouns. Further the
root forms of adjectives change according to
gender. Monier William's dictionary has
around 40,000 adjective entries. The head
words corresponding to all these entries are for
masculine/neuter gender. It also contains the
information about changes required to form
the feminine root form. Sanskrit grammar has
well defined rules to add the feminine suffixes.
Using these rules, and the information in the
dictionary, feminine forms of adjectives were
formed automatically followed by random
checking for their correctness. A separate list
of indeclinables is added to the lexicon list, to
handle avyayas.
 With a total of 222 paradigms for nouns and
pronouns and 24 forms each (8 vibhaktis and 3
numbers) and a root dictionary of around
1,53,294 words extracted from Monier Wil-
liam's dictionary and v¡caspatyam, the current
subanta handler can analyze 36,79,056 word
forms.

5.2 Ti´anta analyzer

The dh¡turatn¡kara contains different finite
forms for all the verb roots in the dh¡tu p¡tha.
This dictionary being meant for the human
beings, all the verb forms varying with differ-
ent number and person are not listed for all the
verbs. So writing simple Perl programs, differ-
ent forms were generated and checked manu-
ally. This database currently contains
10,13,570 verb forms corresponding to 10
lak¡ras, 3 numbers, 3 persons, kartari,
karma¸i, Nic and ya´luganta forms of around
2000 verb roots and around 900 n¡madh¡tus.
This data-base is used in the form of hash table
for giving the analysis of verbal forms.
 In case of Sanskrit, one or more upasargas
(verbal prefixes) get added to the verb roots to
form new verb roots. The addition of upasarga
typically involves morphophonemic changes
in the root form following the sandhi rules.
The Dh¡turatn¡kara contains only the forms
corresponding to basic roots. The number of

commonly used upasarga combinations is
around 70.
 One way to handle verb forms with upasarga
is to generate all the forms corresponding to
these upasargas also. Another possibility is to
guess the upasarga and split. Third alternative
is to manually split the upasarga till a good
upasarga guesser is built. Currently we are
following the third approach.

5.3 Kridanta analyzer

K¤tadantar£pam¡l¡ contains a good database of
commonly occuring kridantas. Around 135
kridantas can be formed corresponding to each
verb of which around 20 are commonly occur-
ing. Further some of the kridantas can take
noun inflections while others are indeclinables.
As experienced with other texts, kridan-
tar£pam¡l¡ also being written for human us-
age, does not list all the forms for all the verbs
uniformly. Sometimes the order is also differ-
ent. Sometimes it just carries a note saying that
the forms are similar to such and such verb. So
the book, even if is available in e-form, is not
readily usable. Special programs using the
regular expression power of Perl are written by
the authors to extract the information from this
book and further this data is linked with al-
ready existing database of dh¡tup¡tha. Num-
ber of forms extracted from the book is around
42,457.
 Further since some of the kridanta's also
take nominal suffixes, and the feminine forms
being typically different from their mascu-
line/neuter gender counterparts, a special pro-
gram was written to generate the feminine
forms and assign default noun paradigms to all
these kridanta pratipadikas. Just as in the case
of ti´antas, here also upasargas are treated
separately. However, upasarga in case of a
particular kridanta exhibit a typical behaviour.
A verb with upasarga takes 'lyap' form whereas
without upasargas take 'ktv¡' form. e.g. ¡gatya,
gatv¡. A special module takes care of this part.

k¤tadanta analyzer algorithm

1. Get the word (where upasargasare split by
manually).
2. Remove the upasarga and check the word

 in ' k¤tadanta' dictionary.
 If present in the dictionary
 if k¤tadanta = lyap
 if upasarga is present
 produce the answer.
 else report an error message

 else produce the answer
 else
 check the word for noun inflection.
 If noun inflection is present,
 if root is a kridanta
 produce answer
 else produce an error
 else produce an error

5.4 Sam¡sa analyzer

From word formation point of view, sam¡sas
in Sanskrit may be classified into 6 different
categories (see fig 2).
 Of these 6 combinations, only two are pro-
ductive. The analysis of Ramayana’s first
k¡nda shows the following results:

bsubanta-subanta 1863

bsubanta- pr¡tipadikas 763

Table 2: sam¡sa distribution in first k¡nda.

 Instances of other sam¡sa are not found in
the first k¡nda.

 Sam¡sa is conjoining of more than one
words giving rise to a single word. It poses
two problems from analysis point of view. At
morphological level, only the last component
of the sam¡sa undergoes inflection and hence
contains the gender, number, vibhakti informa-
tion. The other components undergo morpho-
phonemic changes as per the sandhi rules. For
example, in case of ‘r¡japurushaH’, the con-
stituents are r¡jan and purusha. ‘r¡jan’ has un-
dergone a change to become ‘r¡ja’. The
pr¡tipadika ‘r¡jan’ will be available in the lexi-
con, but not ‘r¡ja’. While splitting the sam¡sa
into constituents, a typical student of Sanskrit
may not know the actual pr¡tipadika. For him it
is easier to split it as ‘r¡ja-purushaH’ rather than
‘r¡jan-puruushaH’. To account for this, a lexicon
of ‘sam¡sa-p£rva pada’s is created which con-
tains a list of words such as ‘r¡ja’ which occur
as constituents of sam¡sa.
The other problem is typical of bahuvr¢hi

compounds. In case of bahuvr¢hi, the last com-
ponent of the compound takes the gender of
the referent. For example, ‘¡nanam’ though is
neuter gender, in case of ‘vik¤ta-¡nan¡m’ it is
feminine. To account for this type of bahuvr¢hi
compounds, a list of commonly occurring
components of bahuvr¢hi with their prati-

padika forms in other genders are listed in the
‘sam¡sa-uttara pada’ list.
 It should be noted that this sam¡sa analyzer
just gives the morphological analysis of the
padas involved in the sam¡sas, and does not
declare the type of the sam¡sa. The latter part
requires a world knowledge and also some-
times context.
 As one can see, these are just temporary and
ad-hoc solutions. Better solutions need to be
worked out. Till then these ad-hoc solutions
help in understanding the complexities in-
volved.
Sam¡sa handler algorithm

1. Split the given word into different

constituent members.
2. Ensure that each constituent member

except the last one is either in the
lexicon database or is a kridanta or a
ti´anta or in the list of sam¡sa puur-
vapada list, or has a valid morpho-
logical analysis.

3. Check whether the morph analysis of
the last word exists. For this use the
normal lexicon database as well as
the sam¡sa uttarapada list.

4. If both 2 and 3 are satisfied, produce
the answer.

5.5 Overall Algorithm
Each word is filtered through all the four han-
dlers, viz. subanta handler, ti´anta handler,
kridanta handler and the sam¡sa handler, and
all possible answers are produced.

Advantages of this approach
In this approach, the programs are independent
of the data. Hence, a linguist can handle the
morphological analyzer with ease. He can up-
date the data without disturbing the programs.
Secondly, since different modules handle dif-
ferent categories of words, different people can
work simultaneously without affecting each
other’s work. More modules to handle other
derivational suffixes such as taddhitas can be
plugged in when they are ready.

6 Results

The following table shows size of the data
bases in the current implementation of the
morphological analyzer.

Noun/Adjective lexicon 153294

Finite verb forms 1013510
Non finite verb forms 42457
Sam¡sap£rva pada 275
Sam¡sauttara pada 300

 Table 3: Current Data Size

 This analyzer was developed and improved to
handle the words from the first k¡nda of
r¡mayana(R). Naturally the performance on the
r¡m¡yana text is good. Same analyzer is also
tested on pancatantra(P) text, sample from
harÀa carita(H) and elementary Sanskrit
reader(E). The analysis is shown below.

 R P H E
Total
words

21270 498 231 240

Unrecog-
nised
words

500
(2.5%)

28(6%) 7(4%) 0

 Table 4: Results

Analysis of unrecognized words
Around 50% of the unrecognized words were
typos or cases of splitting errors. Remaining
were the cases of missing lexicons. In
r¡mayana around 15% of the unrecognized
words were ‘non-p¡ninian’ usages.

7 Conclusion
This paper describes a practical approach to
build a morph analyzer. Though it does not
give any linguistic insight, it provides a practi-
cal tool, which can be used to build other
computational resources such as sandhi split-
ter, spell checker etc. to analyze the Sanskrit
text.
 The analyzer being modular, it is easy to add
new modules to it. For example, the current
analyzer does not have a module to handle the
'taddhita' suffixes that produce derived nouns.
There are quite a few taddhita suffixes that are
very productive, and are in common usage,
such as 'tasil', 'matup', etc.
 Further, the current analyzer, separates the
data from programs, making it easy to update
the database without changing the programs.
Any language person with good knowledge of
Sanskrit grammar can handle this data with
ease. A program to assign the paradigms
automatically also makes the updation/addition
of lexicon further.
 The current coverage of the morphological
analyzer on unknown text is around 95%.

Further, as is observed during the analysis of
different unrecognized words, mainly the
words were not recognized because the
pr¡tipadika was not available in the lexicon. It
is very straight-forward to add the
pr¡tipadikas in the lexicon. So if this morpho-
logical analyzer is put to actual use, incre-
mentally its performance can be improved
further. This system may also be used to me-
chanically test different interpretations of
aÀt¡dhy¡y¢ leading to different implementa-
tions.

Acknowledgement
Authors thank Prof. K. V. Ramkrishna-
macharyulu, Vice chancellor of Shri Raman-
anda Rajasthan Sanskrit University for giving
useful suggestions in handling sam¡s¡s.
Thanks are also due to Sri. Srinivas Varakhedi
and the students of M.A. ¿¡bdab°dha course
for supplying paradigms of numerals, and pro-
viding feminine forms of adjectives.

References
ANUSAARAKA, http://ltrc.iiit.net/~anus¡raka

ASR Melkote, http://www.sanskritacademy.org/

Bharati Akshar, Vineet Chaitanya, Rajeev Sangal.
1995, Natural Language Processing: A Paninian
Perspective, Prentice-Hall of India (Chapter 3)

CDAC-B http://www.cdac.in/html/ihg/ihgidx.asp

Huet Gerard, 2003, Towards computationsl Proc-
essing of Sanskrit, Proceedings of ICON 2003

Huet, http://sanskrit.inria.fr/

Jain Vinish 2004, Sanskrit-English Anus¡raka:
Morphological Analyzer and Dictionary Compo-
nent, IIIT-Hyderabad

Karp Daniel, Yves Schabes, Martin Zaidel, Dania
Egedi, 1992, ‘A Freely Available Wide Coverage
Morphological Analyser for English’, Proc of Col-
ing, 1992.

Koskennieni kimmo, 1983, Two level morphology:
a general computational model for word-form rec-
ognition and production, Technical report, Univer-
sity of Helsinki, Helsinki,Finland

Monier 1899: Sanskrit-English Dictionary, Oxford.

Muni L¡vanya Vijaya Suri, 1867, Dhaturatn¡kar¡H,
Navarang Booksellers and publishers, New Delhi.

RSVP, http://rsvidyapeetha.ac.in/~anus¡raka

SANSK-NET, http://www.sansk-net.org

Vasu Srisa chandra , 1962, The aÀt¡dhy¡y¢ of P¡nini,
Motilal Banarasi Das, Delhi

Vishvanathan S, Ramesh Kumar S, Kumar Shan-
mugham B, Arul Mozi S, Vijay Shankar K, 2003, A
Tamil morphological Analyzer, ICON 2003

Appendix A
Sample page from kridanta ruupamaalaa

<®j¤ d¢ptau--1-s-a.>
 (131) "®j¤ d¢ptau" (I--bhv¡diÅ--179. aka.
s®¶. ¡tma.)
 `d¢ptau ¿apy®jat® tatra, bhav®d®jati
kampan® .." (¿l°. 58) iti d®vaÅ .
®jakaÅ--jik¡, ®jakaÅ--jik¡, ®jijiÀakaÅ--Àik¡ ;
®jit¡--tr¢, ®jayit¡--tr¢, ®jijiÀit¡--tr¢ ;
--- ®jayan--nt¢, ®jayiÀyan--nt¢--t¢ ;
®jam¡naÅ, ®jayam¡naÅ, ®jijiÀam¡¸aÅ ;
®jiÀyam¡¸aÅ, ®jayiÀyam¡¸aÅ, ®jijiÀiÀyam¡¸aÅ ;
{1}®k_--®g_--®jau--®jaÅ ; {1.`c°Å kuÅ' (8-2-30)
iti kutvam .} --- ---
{A}®jitaÅ--tam,
{A."amuµcanairmaµcitacittamaµcitatray¢matapra
stucitaiÅ ¿ubh¡rjakaiÅ . sam¤µjitaÆ kan-
damabh¤ktasatphal¡nyadadbhir®katra yad®jitaÆ
janaiÅ .." dh¡. k¡. 1-24.} ®jitaÅ--tam, ®jijiÀitaÅ--
tav¡n ;

Appendix B
Sample entries in kridanta database corre-
sponding to the entries shown in Appendix A:

"®jaka","®j¤","1","¸vul","0","noun_m"

"®jaka","®j¤","1","¸vul","0","noun_n"

"®jik¡","®j¤","1","¸vul","0","noun_f"

"®jaka","®j¤","1","¸vul","¸ic","noun_m"

"®jaka","®j¤","1","¸vul","¸ic","noun_n"

"®jik¡","®j¤","1","¸vul","0","noun_f"

"®jijiÀaka","®j¤","1","¸vul","san","noun_m"

"®jijiÀaka","®j¤","1","¸vul","san","noun_n"

"®jijiÀik¡","®j¤","1","¸vul","san","noun_f"

"®jit¤","®j¤","1","¿at¤","¸ic","noun_m"

"®jit¤","®j¤","1","¿at¤","0","noun_n"

"®jitr¢","®j¤","1","¿at¤","0","noun_f"

"®jayit¤","®j¤","1","¿at¤","¸ic","noun_m"

"®jayit¤","®j¤","1","¿at¤","¸ic","noun_n"

"®jayitr¢","®j¤","1","¿at¤","¸ic","noun_f"

"®jan¢ya","®j¤","1","an¢ya","0","noun_m"

"®jan¢ya","®j¤","1","an¢ya","0","noun_n"

"®jan¢y¡","®j¤","1","an¢ya","0","noun_f"

