Sanskrit Morphological Analyser: Some Issues

Amba Kulkarni and Devanand Shukl

Department of Sanskrit Studies,
University of Hyderabad,
Hyderabad
apksh@uohyd.ernet.in,dev.shukl@gmail.com

1 Introduction

Sanskrit has rich inflectional as well as derivational morphology. At the same
time it enjoys the privilege of having a formal (to a large extent) grammar in
the form of Astadhyay1 built over 25 centuries ago. One may think, therefore,
it would be a trivial task to build a morphological analyser based on this gram-
mar. But it is not so. Though well defined rules for Sanskrit morphology exist
in Astadhyayt, for a typical computational linguist without any knowledge of
Sanskrit, it is difficult to build a system incorporating these rules. At the same
time, it is rare to find a person who understands the Astadhyayt well and has
also a good knowledge of computers for its implementation. Further there are
controversies over the use of meta rules (paribhasa) used for application of the
rules of Astadhyayi. Therefore, incorporating the rules of Astadhyayl as they
are, is a difficult task. As a result, in spite of the existence of a formally defined
and well described grammar, construction of a set of computational tools for the
analysis of Sanskrit texts could not take a momentum for a long time.

If we look at the Sanskrit literature, we see that many attempts have been
made to render the learning of Sanskrit word formation easier. The Sanskrit
grammatical tradition provides evidence for the implementation of the two well
known models of morphological descriptions viz. Item and Process model and
the Word and Paradigm model. While the rules in Astadhyayt may be best de-
scribed as an example of Item and Process model, the later Sanskrit texts such
as Siddhanta-Kaumudi[15], Riipacandrika (a compilation of representative word
forms), Dhaturatnakara[19] (a lexicon of verb forms), Krdanta-Riipamala[17] (a
book listing frequently used nominal stems derived from the verbal roots) use
the Word and Paradigm model and are best suited either for pedagogical pur-
pose or for quick reference. Both these traditions are equally popular among the
Sanskrit scholars and have their own advantages.

The issues related to the development of Sanskrit morphological analyser rang-
ing from the representation of phonemes for computation, the suitability of Uni-
code versus various transliteration schemes for internal representation, handling
sandhi and the complexity involved in building the analyser are well described

by Huet in [7],[8]. In this paper, we would like to model the morphology de-
scribed by Panini from a computational perspective, and show how one can take
advantage of the various readily available databases described above to develop
a morphological analyser quickly. Such an analyser then can be used to evaluate
the performance of various other morphological analysers. The issues involved in
comparing the analysers are discussed, and finally we suggest evaluation criteria
to evaluate the morphological analysers.

2 Word Formation in Sanskrit

Figure given below gives a computer scientist’s perspective of the Sanskrit word
formation as described by Panini. We deviate from Panini at certain places and
interpret the whole process from the meaning point of view rather than just
looking at the process involved therein'. The basic inflectional morphology is
described by the sttra suptiriantam padam (1.4.14). Thus in the figure below,
the formation of verbal forms (tinantas) and the nominal forms (subantas) from
the verbal roots (dhatus) and the nominal bases (pratipadikas) respectively, rep-
resents the inflectional morphology in Sanskrit. The list of non-derived verbal
roots is more or less a closed list?. The list of nominal bases on the other hand
is open®. Sup and tin are the list of inflectional suffixes a nominal base and a
verbal root take respectively.

The krt and the taddhita are the derivational suffixes added to the verbal
roots* and nominal bases® respectively, producing new nominal bases. Sanadi
suffixes are of 3 types: some operate on nominal bases®, some on nouns’ and
some operate on verbal roots®. Prefixes when attached to the verbal roots change
the meaning of verbal roots and inflect further like a verb?. Finally there are
certain nominal forms which take a special suffix cvi followed by one of the ver-
bal roots kr, bhi or as to produce new verbal bases!?.

It is obvious from the given figure that the recursion in this word formation dia-
gram leads to over-generation. But as is evident from the Paninian sutras, there

! From processing point of view first the tin is attached and then the upasarga gets

attached to the verb form, whereas from the meaning point of view, verbal root
together with the upasarga give a special meaning to the verb.

We find some instances of verbal roots which are not listed in the dhatupatha such
as damb from which the word vidambana is derived.

arthavat adhatuh apratyayah pratipadikam (1.2.45)

(dhatoh) krt atin (3.1.93)

krt taddhita samasasca (1.2.46)

lohitadidajabhah kyas 3.1.13

sup atmanah kyac (3.1.8), etc.

sanadyanta dhatava.h (3.1.32)

9 pradayah upasargah kriyayoge (1.4.58)

10 krbhvastiyoge sampadyakartari cvih (5.4.50)

W 9 O U W

arthipaksah

prtpadikam |—(5v7)
$abdakosah @
dhatupathah -

“cvi+tkr/bhu/as

sanadih1

Legends:
tinantah: verbal form tin: verbal suffix
pratipadikam: nominal base sup: nominal suffix
krt: derivational suffix sanadih: derivational suffixes
upasargah: verbal prefix $abdakosah: list of nominal bases
stripratyayah: feminine suffixes taddhitah: nominal derivational suffixes
subantah: nominal form dhatupatah: list of verbal roots

is no mention of any limit over the recursion. Here are some examples showing
recursion and productive nature of Sanskrit morphology.

1. pathayita = path(verbal root) + nic(sanadihl) + tre(krt) + feminine suffix
+ sup .

2. pipathayisati = path(verbal root) + nic(sanadihl) + san(sanadihl) -+ tin .

3. vyavaharl = vi(upasarga) +
an(upasarga) + ava(upasarga) + hr(verbal root) + nic(sanadihl) + an +
feminine suffix + sup .

4. samabhivyahara = sam(upasarga) + abhi(upasarga) + vi(upasarga) + an(upasarga)
+ hr(verbal root) + ghan(krt) + sup .

5. susammodayantika = su(upasarga) + sam(upasarga) + mud(verbal root)
+ nic(sanadihl) + Satr(krt) + feminine suffix 4+ kan(taddhita) + feminine
suffix 4 sup .

However, the ability of human mind to process a complex string puts a limit
on these potentially infinite productions to a finite number and is supported by
the actual data. Words with more than three suffixes are typically rare compared
to the words with single suffix or double suffixes. Further, for all practical pur-
poses, the derived word forms can always be kept in the lexicon as headwords.
These may be analyzed if there is a need.

There is another important phenomenon which needs to be discussed viz. the
compound formation in Sanskrit. The Sanskrit word samasah for a compound
means samasanam which means “combination of more than one words into one
word which conveys the same meaning as that of the collection of the compo-
nent words together”. While combining the components together, a compound
undergoes certain operations such as loss of case suffixes, loss of accent etc. ([12],
[3]). The Sanskrit compounds may be classified in two different ways — semantic
and syntactic. Sanskrit literature mentions 6 types of syntactic classification!!
viz:

Subanta (noun) + Subanta (noun) (r@jepurusah)
Subanta (noun) + Tinanta (verb) (paryyabhasayat)
Subanta (noun) + nama (nominal base) (kumbhakarah)
Subanta (noun) + Dhatu (verbal root) (katapra)
Tinanta (verb) + Subanta (noun) (krntavicaksana)

Tinanta (verb) + Tinanta (verb) (pibata-khadata)

Of these, only three types of compounds viz. noun-noun, noun-nonimal base and
noun-verb(essentially the pre-verb verb sequence) are very frequent, and other 3
are rare. The rare compounds can always go in the lexicon. It is the productive
compounds that need to be handled by the morphological analyser. Though
compounds of 2 or 3 words are more frequent, compounds involving more than
3 constituent words with some compounds even running through pages is very
common in Sanskrit literature. Here are some examples of Sanskrit compounds
involving more than 3 words.

— veda-vedanga-tatva-jnah
— pravara-mukuta-mani-marici-manjari-caya-carcita-carana-yugala
— jala-adi-vyapaka-prthivitva-abhava-pratiyogi-prthivitva-vati

Only the last component of the compound has the case suffix, and all the previous
components assume a ‘compounding form’ — distinct from the nominal base.
Thus a Sanskrit morphological analyser needs to analyse the compounding forms
as well. Another phenomenon of Sanskrit compounds that needs to be handled
by Sanskrit morpological analyser is the exo-centric(bahuvrihi) compounds with
the head or the final component exhibiting a gender of an object it denotes
which may be different from its default gender. For example consider an exo-
centric compound formed by the words pita (yellow) and ambaram (cloth). The
word ambaram is in neuter gender. When it is used to refer to a man wearing
yellow clothes its form is pitambarah and when it refers to a woman wearing
yellow clothes its form is pitambara. The head words ambarah and ambara are
the nominative singular forms in masculine and feminine gender respectively.
The default morphological analyser will fail to analyse these forms, ambaram
being a neuter gender word.

" suparh supa tina namna dhatunatha tinar tina |

subanteti vijieyah samasah sadvidhoh budheh ||

2.1 Formal Grammar for Sanskrit Morphology

For the benefit of computational linguists, we translate the above figure into a
more formal grammar by following the notation of context free grammar for-
malism. This exercise, we believe, will give us a better way to compare various
implementations.!?

verbal_form = verbal_root .13 verbal_suffix ((sup)tinantam padam 1.4.14)
nominal form = stem . sup (sup(tir)antam padam 1.4.14)
stem = nominal_stem + compound_stem
verbal_root = root (from Dhatupatha) +
verbal_root . sanadihl (sanadyanta dhatavah 3.1.32) +
nominal stem . sanadih2 (lohitadidajabhyah kyas 3.1.13) +
nominal_form . sanadih3 (sup atmanah kyac 3.1.8) +
upasargah_seq . root (upasargah dhatuyoge 1.4.58; Also covers the
compound of type supam tina) +
base . cvi . bhiikr,as (krbhvastiyoge sampadyakartari cvih 5.4.50)
5. nominal_stem = nominal_base 4+ nominal_base . feminine_suffix
6. nominal base = base (arthavat adhatuh apratyayah pratipadikam 1.2.45) +
base . taddhita ((krt) taddhita (samasah) ca 1.2.46) +
verbal_root . krt (krt (taddhita samasah) ca 1.2.46, and dhatoh krt
atiny 3.1.96)
7. comp_stem = comp_base + compound_base . feminine_suffix
8. compound_base = pre_compound_base . nominal_base (supam supa)
pre_compound_base . {bha,pra,..} (supam dhatu) +
pre_compound_base . {kara/da/ja/...} (supam namna)
9. pre_compound_base = nominal_base . compound_suff +
pre_compound_base . nominal_base . compound_suff

=W

3 Various efforts

Attempts have been made in the past to develop morphological analysers for
Sanskrit by the Center for the Development of Advanced Computing, India and
Academy of Sanskrit Research, Melkote, India. However, they had either limited
coverage or were almost unusable for any serious NLP applications. There have
been notable efforts in the last few years in the area of Sanskrit computing. The
efforts by Mishra[13], Scharf[16], Goyal[4], and Sridhar[18] are towards modelling
Astadhyay1 using computers. They try to simulate the process of word gener-
ation following the rules of AstadhyayT as closely as possible. One of the goals
in their efforts is to understand ‘how’ much formal the system is and also to
provide an environment so that various interpretations of Panini’s rules may be
tested objectively. These implementations are still in evolving stage. Huet[7],[8]

12 We thank G. Huet for the valuable discussions on the Sanskrit Word Formation.
These discussions not only helped us to improve the Sanskrit Word Formation figure
substantially but also motivated us to express the grammar in a more formal way.

13 is used to represent a joining operation and + indicates alternative possibilities

is more focussed on building a practical system rather than on the philosophical
issues related to the structure of Astadhyay1 etc. Naturally he uses the modular
finite state transducers to model the morphological phenomenon including the
internal sandhi as well. The various inflected and derived forms are generated
following the Word and Paradigm approach, and though is not in the strict sense
Paninian, captures the generalisation found in Panini. Jha et al[10] have imple-
mented the Sanskrit morphological analyser using database models wherein they
store the suffixes and stems in the databases and report the possible stem-suffix
search pairs from the databases. The suffix database can also be used stan-
dalone to handle out-of-lexicon words by ‘guessing’ their suffixes. The Akshar
Bharati group has been working on the development of morphological analysers
for various Indian languages using the Word and Paradigm model, which is now
extended to Sanskrit as well. The complexity of Sanksrit morphological analyser
being more when compared to other Indian languages, and at the same time
availability of various databases of readymade word forms, the group followed
a different approach taking leverage of available resources and data bases for
Sanskrit. We describe this approach here.

4 Building a wide coverage morphological analyser
quickly

Developing a morphological analysers by designing a generator and then using
a Finite State Automata to analyse is a natural choice. But in case of Sanskrit,
writing a morphological generator with a reasonable coverage itself is a few man
years effort. At the same time, Sanskrit is rich in various databases. For exam-
ple, Dhaturatnakara is a list of finite verb forms for various verbs for different
lakaras (tense-mood-aspect). In a strict sense it does not follow the Paninian
Dhatupatha, and at some places also deviates a bit from Paninian grammar,
but is still a good starting point. Krdanta-rupamala gives the list of frequently
occuring non-finite verbal forms for various verbs. Riipacandrika lists all the
noun paradigms. These books are being used by people with some exposure of
Sanskrit Grammar as an aid to understand and interpret various Sanskrit texts.
As such these time-tested books serve as a rich source of readymade databases
for developing a reasonable coverage Sanskrit morphological analyser quickly.

Morphological analysers being an important module needed in any NLP ap-
plication, we decided to take leverage of these existing resources and built a sys-
tem quickly. The existing resources provide all the analysed forms, from which a
Finite State Transducer is built. There are two advantages of this approach. The
first one is — in a short span of time, a system with reasonable coverage is avail-
able for use which can be plugged in into any other NLP application. The other
advantage is, since this system is built from the actual forms listed in the books,
and not generated by any software, the data used may be treated as a GOLD
standard data for testing the generators built following various approches.

We used the lt-toolbox'* — a tool developed by the Apertium group for
developing the FST for Sanskrit Analysis. Separate FSTs are built for analysing
the basic inflectional forms, the primary derivatives (i.e. kradantas) along with
the inflected forms that can be generated from them, the secondary derivatives
(i.e. taddhitas) along with their inflected forms, compounding forms and finally
a FST to recognise the heads of the exo-centric compounds that have gender
different from their default gender. These separate FSTs can always be combined
together to get a single FST. The trade-off is between the compile time and the
run time. The total forms - inflectional, derivational and compounding - our
analyser could recognise are 140 million. It is now necessary to evaluate the
morphological analyser and also to compare it with other existing morphological
analysers to verify the claim that the data used to build the analyser forms a
GOLD data.

5 Issues

Initial level of comparison of the noun morphological analysers developed by
Scharf-Hyman, Huet and ours brought out some issues.

1. Treatement of feminine adjectives:
According to the Paninian system at morphological level, nouns and adjec-
tives behave alike. In case of adjectives before forming their feminine forms
a feminine suffix is added to the nominal base. Thus purve is the nomi-
nal base in masculine and neuter, and ptrva in feminine. However, Panini
does not treat the nominal base with feminine suffix as a pratipadika'®. Now
the question is should the analysis of feminine forms produce the root as
purva or purva. From semantics point of view, it is reasonable to agree that
plrva is the base in all the three genders. It brings in brevity, and also the
organisation of the dictionary is simple.

2. Treatment of homonymy:
Another issue is related to homonymy. The question is should the morpho-
logically indistinguishable forms with the same stem but different meanings
be analysed seperately? This in fact is difficult to handle as it is very dif-
ficult to have consensus on whether a word is homonymous or polysemous.
It would be desirable, then to distinguish the roots at morphological level,
provided they have different behaviour at this level. For example, there are
two different seventh case singular forms of the word sva viz. sve and svas-
min. These two forms in fact relate to two different roots. In one case sva
means the ‘self’, whereas in other case it means ‘one’s own property’.

3. Level of analysis:
There is always an issue in the representation of analysis in case of deriva-
tional morphology. For example, for the word gacchati, should the machine
produce the output as seventh case singular form of the nominal base gacchat

' http://www.apertium.org
15 pyap-pratipadikat(4.1.2)

or should it further add the information that the word gacchat is derived
from the verbal root gam by adding a krt suffix? With the use of comput-
ers, however, this is not an issue, since computers provide several ways of
presenting the information in layers, thereby hiding the unnecessary informa-
tion. While designing a tool for comparison of analysis generated by various
analysers, one needs to take this factor into account.

Many more such issues will surface, once we extend our comparison for verbal
inflections and other forms.

5.1 Evaluation Parameters

Typically the evaluation metrics of any tool involves two parameters — Precision
and Recall. Precision tells you the confidence which you can have on the perfor-
mance of the tool, and the Recall gives you the coverage.

Since the morphological analyser gives more than one answers, the evaluation
of Precision and Recall should range over all possible analysis and not over
the words. Further only these two parameters for evaluation of morphological
analyser are not enough. We need a more sophisticated measure which tells us
which of the answers produced by the morphological analyser are wrong, and
also how many answers are missing.

5.2 Precision and Recall

Let the total number of words be N.

Let A; denote number of possible analysis for the word W;.

Thus total number of possible answers for all the words together is

T = Z?:l Aj.

Let B; denote total answers produced by the morphological analyser for a word
Wi.

Let C; denote the number of correct answers (true positives) and

D; denote the number of wrong answers (false positives).

Thus Bi = Cl + Di.

Sum of all the correct answers is C = >_" | C;.
Sum of all the wrong answers is D = 7" | D;.
Precision P = C'/(C + D)

Recall R =C/T

5.3 6 point evaluation

Since the morphological analyser produces more than one answers, it will be
appropriate to carry out more detailed evaluation of the morpholoical analyser
than just evaluating the precision and recall values. Precision-Recall gives general

overall impression about the performance of a system. A more detailed evaluation
is necessary to know what kind of words are over analysed, which are under
analysed, etc. There are 3 parameters viz. an analysis produced by the machine
is either correct (true positive) or wrong (false positive) or machine has missed
(false negative) an analysis. So when a machine produces an output, it may
have zero or more correct analysis, zero or more wrong analysis and zero or
more missing analysis. Accordingly, we have the following possibilities:

sr no|Correct Missing Wrong remark
(True positives)|(False Negatives)|(False Positives)

—
—

1 1 1 1 ativyapti as well as avyapti
2 1 1 0 avyapti

3 1 0 1 ativyapti

4 1 0 0 Ideal Case

5 0 1 1 sp case of 1

6 0 1 0 Unrecognised words (sp case

of 2)

The other two possibilities will never arise

The frequency count of each of these 6 cases, and also the morphological phe-
nomena related to these cases will help the developers of morphological analysers
to decide which aspect of morphology needs further attention for improvement.

5.4 Evaluation Methodology

Several Sanskrit texts tagged maually at various levels — at the level of sandhi
splits (padaccheda), morphological analysis (pada vislesana), sentential analysis
(anvaya, sabdabodha), etc. are available!®. These manually tagged data may be
used for evaluating the system performance. However, comparing the machine
produced morphological analysis with these manually tagged texts will give the
Precision Recall values only for the ‘words in a given context’. These values will
be biased because it is possible that the word has some other analysis in some
other context which goes un-noticed or un-evaluated. Better evaluation strategy
would be to prepare a GOLD standard data for evaluation of morphological
analysers. This data contains all possible analysis of the words selected carefully
to represent various morph phenomenon. The evaluation — either Precision Recall
or 6 point may be done against this GOLD standard data. The possible drawback
of this method is, it is possible that missing out some rare analysis lowers down
the performance of a system. For all practical purposes, it is also necesary to
know the performance on more frequent analysis. For this purpose, one may use
manually analysed texts.

16 B.g. Sarhkseparamayanam by Rashtriya Sanskrit Sansthan, Ramopakhyana by Peter
Scharf, Bhagvad-geeta by Geeta Press, Gorakhpur, to name a few.

6 Conclusion

In this paper we have presented a pictorial representation of the Sanskrit mor-
phology as described by Panini. Further we discussed in brief how we can take
the leverege of various available resources and build the Sanskrit morphological
analyser quickly, that can serve as a model to compare and evaluate other mor-
phological analysers. We also suggested two different criteria for the evaluation
of morphological analysers. An indicative list of issues involved in the compari-
son of various analysers based on our experience is given. It is now a high time
to carry out such comparison rigourously to smoothen out the differences in the
representation if any.

References

1. B. S. Gillon: Autonomy of word formation: evidence from Classical Sanskrit. Indian
Linguistics, 56 (1-4), pages 1552, 1995.

2. B. S. Gillon: Ezocentric Compounds in Classical Sanskrit. In G. Huet, A. Kulkarni,
and P. Scharf, editors, Sanskrit Computational Linguistics 1 and 2. Springer-Verlag
LNAT 5402, 2009.

3. B. S. Gillon: Tagging Classical Sanskrit Compounds. In A. Kulkarni and G. Huet,
editors, Sanskrit Computational Linguistics 3, pages 98-105, Springer-Verlag, LNAI
5406, 20009.

4. P. Goyal, A. Kulkarni and L. Behra: Computer Simulation of Astadhyayi: Some
Insights In A. Kulkarni, and G. Huet, editors, Sanskrit Computational Linguistics 1
and 2, pages 139-161, Springer-Verlag LNAT 5402, 2009.

5. O. Hellwig: Sanskrit Tagger: A Stochastic Lexical and POS Tagger for Sanskrit. In
G. Huet, A. Kulkarni, and P. Scharf, editors, Sanskrit Computational Linguistics 1
and 2, pages 266277. Springer-Verlag LNAT 5402, 2009.

6. O. Hellwig: Extracting dependency trees form from Sanskrit texts, In A. Kulkarni
and G. Huet, editors, Sanskrit Computational Linguistics 3, pages 106115. Springer-
Verlag LNAT 5406, 2009.

7. G. Huet: A functional toolkit for morphological and phonological processing, appli-
cation to a Sanskrit tagger. J. Functional Programming, 15,4:573614, 2005.

8. G. Huet: Formal Structure of Sanskrit Text: Requirement Analysis for a Mechan-
ical Sanskrit Processor. In G. Huet, A. Kulkarni, and P. Scharf, editors, Sanskrit
Computational Linguistics 1 and 2. Springer-Verlag LNAT 5402, 2009.

9. Pandit Ishvarachandra: Astadhyayr. Chaukhamba Sanskrit Pratisthan, Delhi, 2004.

10. G. N. Jha, M. Agrawal, Subash, S. K. Mishra, D. Mani, D. Mishra, M. Bhadra and
S. K. Singh: Inflectional Morphology Analyzer for Sanskrit In A. Kulkarni, and G.
Huet, editors, Sanskrit Computational Linguistics 1 and 2, pages 219-238, Springer-
Verlag LNAI 5402, 2009.

11. A. Kulkarni and V. Sheeba: Building a wide coverage Morphological Analyser for
Sanskrit: A practical approach. Invited speech at ‘First National Symposium on Mod-
eling and Shallow Parsing of Indian Languages’, 31st March - 4th April 2006, IIT
Mumbai.(http://sanskrit.uohyd.ernet.in/faculty /amba/)

12. Mahavira: Panini as Grammarian (With special reference to compound formation).
Bharatiya Vidya Prakashan [Delhi - Varanasi], India, June 1978.

13. A. Mishra: Modelling the Grammatical Circle of the Pinian System of Sanskrit
Grammar In A. Kulkarni, and G. Huet, editors, Sanskrit Computational Linguistics
3, pages 40-55, Springer-Verlag LNAI 5406, 2009.

14. A. Mishra: Simulating the Pinian System of Sanskrit Grammar In A. Kulkarni,
and G. Huet, editors, Sanskrit Computational Linguistics 1 and 2, pages 127-138,
Springer-Verlag LNAT 5402, 2009.

15. Vasudeva Lakshman Shastri Panasikar: Siddhanta Kaumudi. Meharchand
Lachamandas Publications, New-Delhi, 1985.

16. Peter M. Scharf: Levels in Panini’s Astadhyayr. In A. Kulkarni, and G. Huet,
editors, Sanskrit Computational Linguistics 3, pages 66-77, Springer-Verlag LNAT
5406, 20009.

17. S. Ramasubba Sastri: Krdanta-Rupamala, The Sanskrit Education Society,
Madras, 1989

18. S Sridhar and S Varkhedi: Computational Structure of the Astadhyayi and Conflict
Resolution Techniques In A. Kulkarni, and G. Huet, editors, Sanskrit Computational
Linguistics 3, pages 56-65, Springer-Verlag LNAT 5406, 2009.

19. Muni Lavannya Vijaya Suri: Dhatu-Ratnakara Bharatia Book Corporation,
Delhi,2005.

