Type-Identifier for Navya-Nyāya Expressions

Amba Kulkarni* and Arjuna S.R.**

Navya-Nyāya (NN) school of philosophy, an offshoot of Nyāya school of philosophy, apart from philosophical contributions, has contributed a scientific methodology and terminology to express the philosophical thoughts and debates in an unambiguous way. This scientific terminology and methodology leads to linguistic expressions which are typically hard to comprehend due to their linear structure, long compounds and extensive usage of derivational suffixes (Taddhitas). In order to make the comprehension easy, we have built a semi-automatic computational tool. This tool has four components viz. a segmenter, compound parser, type identifier and a graph renderer. In this paper we describe the compound type identifier.

1 Introduction

At the outset, let me take this opportunity to congratulate Prof. Pahi for receiving much deserving lifetime achievement award. I also take this opportunity to thank him for fruitful discussions I had with him at several occasions at Hyderabad and Jaipur on mutually interested topics ranging from linguistics, vaiśeṣika ontology to Navya Nyāya and logic, and I wish in future also I’ll have more such occasions of academically engaging discussions with him.

Navya-Nyāya (Neo-Logic), an offshoot of Nyāyaśāstra (Indian Logic), is one of the fundamental schools of Indian philosophy. The seeds of Navya-Nyāya (NN) School of Philosophy are found in the Udayanāchārya’s work[5]. Gangeśa (century), the founder of NN in his

Tattvacintāmaṇi introduced the technical language of NN. This language deals with the verbal cognition, logic and epistemology. It introduces a few conceptual terms and provides a mechanism to express the underlying cognitive structure corresponding to a linguistic expression in an unambiguous way.

An NN expression (NNE) is a compound, written as a single word without any break or hyphen in between the components. Components when joined to form a compound undergo some changes. For example, the case information of the components joined is lost. The components also lose their accents, and there is mandatory euphonic change (sandhi operation) involved during compound formation. This also makes a compound ambiguous. Anil Kumar et al.[17] describe the steps involved in processing Sanskrit compounds and also discuss the associated computational complexity. The steps involved in the analysis of compounds are as follows.

1. Splitting a compound into components.
 This involves undoing euphonic transformations.
2. Analysing its constituent structure.
 At this stage a compound is analysed showing how the components are grouped together.
3. Identifying relations between the components.
 Now the relation between the components thus grouped is made explicit.
4. Providing a paraphrase of the compound.
 Finally a paraphrase of the compound is generated.

We illustrate these steps with two examples: an English one followed by a NN expression 2

Example 1: Consider an English compound ‘lake water pollution reduction log’. We skip the first step, since the components here are already split.

1. Constituency analysis for this compound is
 (((lake-water)-pollution)-reduction)-log)
2. Type of a compound is now marked which specifies the relations between the components.

\(((\text{lake-water})\text{T7}-\text{pollution})\text{T6}-\text{reduction})\text{T7}-\text{log})\text{T6} \\
Here \text{T} stands for \text{Tatpuruṣa} (an endo-centric) compound and the numbers 6 and 7 indicate the genitive and the locative case markers.

3. The paraphrase of a compound is obtained by supplying the missing prepositions corresponding to the compound type. Thus the paraphrase of the above compound is

\text{Log} of the reduction in pollution of water in lake.

\text{Example 2:} Consider now an NN expression which defines earth as a substance which has smell as its characteristic property.

\text{gandhatvāvacchinnagandhanīḥdheyaṭānīrūpitādhiṃkaraṇaṇvati}. \text{(1)}

1. After splitting the compound into its components, we get

\text{gandhatva-avacchinnagandha-ṇīṣṭha-ādheyaṭa-nīrūpita-adhiṃkaraṇaṇvati}.

Here the components are separated by hyphen and the derivational suffix ‘-vati’ is separated by a caret(^) sign.

2. The constituency parse of this compound is

\(((\text{gandhatva-avacchinnagandha-ṇīṣṭha-ādheyaṭa})\text{-nīrūpita)-adhiṃkaraṇaṇvati})\text{-vati} \\
3. After identifying the relations between the components, we get

\(((\text{gandhatva-avacchinnagandha-ṇīṣṭha})\text{T7-ādheyaṭa})\text{-nīrūpita})\text{-adhiṃkaraṇaṇvati})\text{-vati} \\
where \text{K}, \text{T3}, and \text{T7} stand for \text{Karmadhāraya, Tatpuruṣa} with instrumental case and \text{Tatpuruṣa} with locative case suffix respectively. These are all endo-centric compounds, with a requirement of nominative, instrumental and locative case suffixes during paraphrasing.

4. Finally the paraphrase of this compound is

\text{Nyāyacitrādipikā, consists of four components - NN Segmenter, NN Parser, Graph generator and NN type-identifier. The NN Segmenter splits a compound into its components. The NN Parser, a semi-automatic tool, parses the segmented NNEs. The Graph generator generates two types of graphs - a Conceptual Graph(CG) and a Compressed CG from the parsed NNE. Detailed descriptions of these tools are reported in Arjuna and Kulkarni[3].}

In this article, we introduce the NN type-identifier, a component that identifies the type of a compound in the parsed NN expression. In the next section, we give a brief summary of earlier efforts in building a compound type-identifier. In the third section, we define a context-free
grammars for type identifier and describe important cues for deciding the type of a compound. In the last section, we conclude with our observations on the utility of this endeavour.

2. Earlier efforts

Semantically Pāṇini classifies the Sanskrit compounds into four major types: a) Avyayībhāva, b) Tatpurusa, c) Bahuvrīhi, d) Dvandva. This classification is not sufficient for complete understanding of a compound. For example, the paraphrase of a compound gandhatvāvakchinn is gandhatvena avacchinna, while the paraphrase of ghatābhāvahī is ghaṭasya abhāvahī, and both of them belong to the same class of Tatpurusa. In the given instances, the paraphrases are different due to the semantic differences and it happens in all the types of compound. Based on their semantic differences, these compounds are further sub-classified into 59 sub-types. The types and sub-types of compound are based on standards evolved by the project entitled ‘Development of Sanskrit Computational Tools and Sanskrit-Hindi Machine Translation System’ sponsored by Ministry of Information Technology, Government of India, New-Delhi.

There are very few efforts in the automatic detection of a compound type and sub-type. Anil et al.[17] discuss the steps involved in the analysis of Sanskrit compounds and show how the corpus statistics helps in building a type identifier. Later in 2013, Kulkarni and Anilkumar[16] used clues from Pāṇini’s Aṣṭādhyāyī in identifying the types of certain compounds. They have critically gone through the Pāṇinian sūtras related to compound formation providing semantic clues. They used a proper combination of both statistical and rule-based methods to decide the compound type semi-automatically. Kulkarni et al.[13] extend this work further for modern Indian languages. They discuss how semantic classification of Pāṇini can be applied to modern Indian languages, including English. According to them, access to the semantic content of the components and also wider context is needed to decide the type of a compound. This work was carried out with focus on Hindi and Marathi.

The NNEs have specific vocabulary and the compound type is predictable in such cases. We decided to take advantage of this fact and build a domain-specific type-identifier for NNEs.

3 Analysis of NNE compounds

Compounding of words is always between two components at a time, except in Dvandra, Bahupada-Bahuvrīhi and Bahupada-Tatpuruṣa compounds. Regarding the components of an NN compound, Matilal[18] observes: ‘The NN expression involves a small number of technical terms together with a non-logical vocabulary’. Thus, the components in a NN compound are of two types: 1) a technical term, and 2) non-technical terms. Examples of technical terms are avacchinnā, nirūpīta, nīśṭha. Technical and non-technical terms both can appear either as a first (pūrva)pada component or as a second (uttara)pada component. For example, in a compound ghaṭatva-avacchinnā, the term avacchinnā is the second term. Now consider a compound with three components ghaṭatva-avacchinnā-ādheyatā, which is parsed as ((ghaṭatva-avacchinnā)-ādheyatā). Here, avacchinnā is the second component of a compound ghaṭatva-avacchinnā, and is the semantic head of the compound. This compound is further combined with ādheyatā to form a complex compound3. Since avacchinnā is the semantic head of the first compound-component, instead of calling ghaṭatva-avacchinnā the first component, we may briefly refer avacchinnā as the first-component. Similarly, we can find examples where the words nīśṭha, nirūpīta, etc. also can appear either as the second term or as the first term of a component.

3.1 Semantics of compounds with avacchinnā as one component

The term avacchinnā, as Ganeri[6] describes it, is a sentence forming operator. It joins two terms say ‘X’ and ‘Y’ into a sentence ‘X-avacchinnā-Y’. Now ‘X-avacchinnā-Y’ is always to be parsed as ((X-avacchinnā)-Y). And this will be then paraphrased as ‘Y which is delimited by X’. For example, the three component compound ((ghaṭatva-avacchinnā)-ādheyatā) will be paraphrased as ghaṭatvena-avacchinnā yā sā ādheyatā ‘The super-stratum-ness, which is delimited by pot-ness’. Generalising this, the paraphrase of ((X-avacchinnā)-Y)
will be ‘X{3} avacchinna yat tat Y’, where {3} indicates the instrumental case suffix. Now, following the annotation scheme developed by the Sanskrit consortium, we represent this as ‘((X-avacchinna)T3-Y)K1’, where ‘T3’ stands for an endo-centric compound with a relation expressed by the instrumental case suffix (Tvīyā-Tatpurūṣa), and ‘K1’ stand for a copulative compound with adjectival as the first component (Viṣṇu-pūrvapada-Karmadhāraya).

3.2 Semantics of compounds with niṣṭha as one component

The term niṣṭha is another sentence forming operator as described by Ganeri. Similar to avacchinna, ‘X-ṇiṣṭha-Y’ is always to be parsed as ‘((X-ṇiṣṭha)-Y). And this will be then paraphrased as ‘Y (which is) residing in X’. For example, the three component compound ‘(ghaṭatiṣṭha)-ghatavam) will be paraphrased as ‘ghate-ṇiṣṭham yat tat ghatavam. If we generalise, the paraphrase of ‘((X-niṣṭha)-Y) will be ‘X{7} niṣṭha yat tat Y’, where {7} indicates the locative case suffix. Now, following the same annotation scheme, we represent this as ‘((X-niṣṭha)T7-Y)K1’, where ‘T7’ stands for an endo-centric compound with a relation expressed by the locative case suffix (Saptamī Tatpurūṣa).

3.3 Semantics of compounds with nirūpita as one component

The term nirūpita is termed as a conditioning operator by Ganeri. It also takes two arguments ‘X’ and ‘Y’ to generate a new term ‘X-nirūpita-Y’. This expression is always parsed as ‘((X-nirūpita)-Y). It’s paraphrase is ‘Y (which is) described by X’. For example, the three component compound ‘(ādheyaṇa-nirūpita)-adhiparapatā) will be paraphrased as ‘ādheyaṇa-nirūpita yā sā adhiparapatā. If we generalise, the paraphrase of ‘((X-nirūpita)-Y) will be ‘X{3} nirūpita yat tat Y’, where {3} indicates the instrumental case suffix. Now, following the same annotation scheme, we represent this as ‘((X-niṣṭha)T3-Y)K1’, where ‘T3’ stands for an endo-centric compound with a relation expressed by the instrumental case suffix (Tvīyā-Tatpurūṣa).

Now we look at the context-free grammar of this tool.

4 Context-free grammar

If a compound has only two components, then the extraction of both the component is trivial. However, when a compound has more than two components, we need to have a parse of the compound showing how the components are joined one at a time. With a compound with ‘n’ components, there will be ‘n-1’ compounds. Each compound will have two components, which may be compound themselves. Thus given a such a parsed structure, expressed linearly, now we need to scan this parsed structure and identify the first and second components at each level. This problem is similar to evaluation of a mathematical expression involving nested parenthesized expressions. We give below the context-free grammar to analyse such an expression. For each nested compound, the head is synthesized from its components. The context free grammar with rules for synthesizing the attributes is given in Table-1.

Table 1: Production rules with attributes

In this grammar, ‘Ppada’ stands for a pūrvapada ‘the first component’ and ‘Upada’ stands for an uttarapada ‘the second component’. The input for this grammar is a parsed compound. For instance, input will be ‘((gandha-ṇiṣṭha)-ādheyaṇa). In this input,
‘(gandha’ is the pūrvapada and ‘niṣṭha’ is the uttarapada for the first level of compounding. Then at next level, ‘(gandha-niṣṭha)’ is the pūrvapada and ‘ādheyaṭā’ is the uttarapada. The word or pada after the symbols (,) is the key to identify the types of the compound in any NNE. In the above instance, gandha and ādheyaṭā are non-technical terms and niṣṭha is a technical term. Hence, as discussed above, when niṣṭha is uttarapada, then type of that compound is inevitably T7 - Saptam-Ṭapuruṣha. If it is the head of the pūrvapada, then the type of compound will be undoubtedly K1-Viśeṣa-pūrvapada-Karmadhāraya. Similarly when avacchīna is a uttarapada, compound type will be always T3 - Ṭṛtīy-Ṭapuruṣha and if it is head of pūrvapada, then it will be beyond any doubt K1 - Viśeṣa-pūrvapada-Karmadhāraya.

The constituency parse of the expression ‘(gandha-niṣṭha)-ādheyaṭā’ following this grammar is shown in Figure 1.

Figure 1: Constituency parse corresponding to the grammar

We will see how the head gets computed in Fig 2 and Fig 3 with the same example.

Figure 2: Head-info computed according to the grammar - step 1

Figure 3: Head-info computed according to the grammar - step 2
5 Analysis of the result

We tested this type identifier on 352 NNEs collected from Māthurīpaścalākṣaṇāsravasvam. Each NNE has more than two components. Minimum number of components were 3 and the longest NNE has 40 components. Thus the minimum number of binary compounds in these NNEs were 2 and maximum number of binary compounds were 39. The 352 NNEs together had 2329 binary compounds. Of these 1340 compounds could not be identified, since none of the components of these compounds was from the NN technical vocabulary. Remaining 989 compounds are recognised correctly.

Among the 59 fine-grain compound types, only 8 types of compound are used with NN technical vocabulary. These types are - K1 (Viṣeṣaṇa-pūrṇa-pāda-Karmadhāraya), T3 (Trīyā-Tatpuruṣa), T6 (Ṣaṣṭhī-Tatpuruṣa), Bs6 (Ṣaṣṭhīya-Bahuurvṛti), T7 (Saptami-Tatpuruṣa), K6 (Ṣambhāvanā-pūrṇa-pāda-Karmadhāraya), T5 (Pañcamī-Tatpuruṣa), Tds (Samāhāra-Dvīgu).

Table 2 gives the classification of these compounds along with their frequency of occurrence. Our grammar could recognise all of them correctly.

<table>
<thead>
<tr>
<th>Compound Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>283</td>
</tr>
<tr>
<td>Bs6</td>
<td>203</td>
</tr>
<tr>
<td>T6</td>
<td>186</td>
</tr>
<tr>
<td>T3</td>
<td>178</td>
</tr>
<tr>
<td>T7</td>
<td>74</td>
</tr>
<tr>
<td>K6</td>
<td>45</td>
</tr>
<tr>
<td>T5</td>
<td>13</td>
</tr>
<tr>
<td>Tds</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>989</td>
</tr>
</tbody>
</table>

Table 2: Frequency distribution of identified compound types

6 Conclusion

This is an effort to ease the process of understanding NNEs with the assistance of computational device. Once the compound types are identified, it is possible to generate the paraphrase also automatically. In order to identify the compound types of the compounds which do not involve NN technical terms, we need the lexical semantics. Anil Kumar[15] and Pavankumar[22] have listed various semantic features that are needed for the analysis as well as generation of the compounds. Further the advances in machine learning will also help in identifying suitable parameters for correct identification of the compound types. We are currently working on how to use the lexical semantics effectively for identifying the compound type automatically in case of compounds consisting of non-technical terms.

References

Endnotes

1. Amba Kulkarni
2. These examples are taken from Arjuna and Kulkarni[3].
3. samastapada-garbhita-samāsa

Professor
Department of Sanskrit Studies,
Hyderabad Central University
Hyderabad.
Email : ambapradeep@gmail.com
M. 8106783000

Research Fellow
Department of Sanskrit Studies,
Hyderabad Central University
Hyderabad
Email : arjunsr1987@gmail.com
Mob : 8106783000