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Synopsis

Nyāya (Indian Logic) is one of the fundamental branches of philos-

ophy in Sanskrit. Sage Gautama is known as the founder of Nyāya

philosophy. Taking into consideration the developments in Nyāya, one

can classify the Nyāya literature into two broad divisions.

1. Prācīna-Nyāya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyāya (Modern Logic/Neo-Logic, 1200 AD - till date)

According to the tradition the period of Prācīna-Nyāya ranges from

Sage Gautama to Gaṅgeśa and post Gaṅgeśa period as Navya-Nyāya.

In ancient times, debate was one of the important means to express

the thoughts or ideas of one’s own philosophy to the scholars and the

common people as well. Indian intellectual tradition considers debate

seriously, and it came up with specific rules regarding the conduct of a

debate. In Nyāyasūtra, 5.2.1 - 24, Sage Gautama himself defines the ni-

grahasthānas. But around 9th century, Śrīharṣha, an Advaita vedāntin

in his work Khaṇḍanakhaṇḍakhādya came up with many fallacies in

Nyāya philosophy. After this, Udayana felt the need of a new technical

language, where there is no ambiguity in expressing the issues. In the

works of Udayana, Ātmatattvaviveka and Nyāyakusumāñjali, we find

the earlier traces and hints towards the necessity of a technical language
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and efforts towards its creation. A few decades later, Gaṅgeśa with the

influence of Udayana, came up with an idea to bring unambiguity in the

debate process. Thus he completely concentrated on pramāṇa part, not

on the prameya as Nyāya tradition did. He developed a new technical

language in his monumental work. This gave rise to a new offshoot of

Nyāya, Navya-Nyāya (NN).

Development of new language for the debate made Gaṅgeśa stood apart

from all other philosophers. He emphasized on the development of

many technical terms that brought unambiguity in the process of de-

bate. This technical language influenced all other branches of philos-

ophy in a big way. Of course, Navya-Nyāya also contributed towards

theoretical insights into the Nyāya philosophy.

We notice the seeds of Navya-Nyāya in the works of Nyāyakusumāñjali

of Udayana. But later Gaṅgeśa (12th century) provided a strong foot-

ing through his Tattvacintāmaṇi and thus renowned as the founder of

NN. NN is famous for its sophisticated and unique language to express

the thoughts in an unambiguous way. This language of NN deals with

verbal cognition, logic and epistemology. This language influenced al-

most every Indian philosophy. In recent times, Computer Scientists(4)

also noticed the importance of this formal language.

Goal of research
There are two types of difficulties in understanding this language.

• Linear structure with long compounds

• Concepts associated with the conceptual terms

There are noteworthy efforts in understanding of the complexity of

conceptual terms. Shukla(40) with his lucid explanations eases the

2



complexity of the NN technical terms. Ingalls(13) compared the NN

concepts with western logic. Scholars like Matilal(27) and many others

contributed to ease this difficulty.

A few scholars concentrated on the understanding of the syntax of

the NN technical language. Kulkarni(20) analysed this language with

computational perspective using the modified version of Conceptual

Graph. Ganeri(9) provides a formal description of various primitive

terms of NN. Scholars like Varakhedi(45) and a few others put their

effort in this field.

NN Expressions are used to describe the cognitive structure

(jñānākāraḥ) as well as the physical world around us (sambaddha-

padārthaḥ). An NN Expression is a compound. A compound, in

Sanskrit, is written as a single word without any gap or hyphen in

between the components, with components joined together following

euphonic changes. This makes the processing of Sanskrit compounds

more challenging. Kumar et al.(26) describe the steps involved in pro-

cessing Sanskrit compounds and also discuss the associated computa-

tional complexity. The steps are -

1. Splitting a compound into components.

This involves undoing euphonic transformations.

2. Analysing its constituent structure.

At this stage a compound is analysed showing how the compo-

nents are grouped together.

3. Identifying relations between the components.

Now the relation between the components thus grouped is made

explicit.

4. Providing a paraphrase of the compound.

3



Finally a paraphrase of the compound is generated.

We illustrate these steps with two examples: an English one followed

by an NN Expression.

Example 1: Consider the long compound ‘lake water pollution reduc-

tion log’.

We skip step 1, since the components here are already split.

1. Constituency analysis for this compound is

((((lake-water)-pollution)-reduction)-log)

2. Relations between the components are now marked.

((((lake-water)T7-pollution)T6-reduction)T7-log)T6

Here T stands for Tatpuruṣa (an endo-centric) compound and

the numbers 6 and 7 indicate the genitive and the locative case

markers.

3. The paraphrase of this compound is generated.

Log of the reduction in pollution of water in lake.

Example 2: Consider the following NN Expression which defines earth

as a substance with smell as its characteristic property.

gandhatvāvacchinnagandhaniṣṭhādheyatānirūpitādhikaraṇatāvatī.

1. After splitting the compound into its components, we get

gandhatva-avacchinna-gandha-niṣṭha-ādheyatā-nirūpita-

adhikaraṇatā∧vatī.

Here the components are separated by hyphen and the deriva-

tional suffix ‘-vatī’ is separated by a caret.

2. The constituency parse of this compound is

((((gandhatva-avacchinna)-((gandha-niṣṭha)-ādheyatā))-

nirūpita)-adhikaraṇatā)∧vatī

3. After identifying the relations between the components, we get

4



((((gandhatva-avacchinna)T3-((gandha-niṣṭha)T7-

ādheyatā)K)K-nirūpita)T3-adhikaraṇatā)K∧vatī

where K, T3, and T7 stand for Karmadhāraya, and Tatpu-

ruṣa compounds with instrumental and locative case suffixes.

These are all endo-centric compounds, with a requirement

of nominative, instrumental and locative case suffixes during

paraphrasing.

4. Finally the paraphrase of this compound is

Sanskrit: gandhatvena avacchinnā, gandhe niṣṭhā yā ādheyatā,

tannirūpitā adhikaraṇatā∧vatī

Gloss: by_smellness delimited in_smell residing which

substratum-ness determined_by_that superstatum-ness possess-

ing

English: An object which has superstatum-ness which is deter-

mined by the substratum-ness that is residing in the smell and is

delimited by the smell-ness.

In the traditional oral method of teaching, the teacher used to provide

the paraphrase of such long compounds starting from the innermost

compound, building in a bottom-up approach, joining one component

at a time, explaining the type of the compound. This would then

create a whole knowledge structure in the mind of a student. With the

advancement of new technology, now it is possible to represent the same

knowledge pictorially, which helps a modern student who relies more

on visual aids than memory to understand such complex compounds

easily.

5



The NNE can be represented pictorially after the constituency parse.

For instance, This NNE ((((gandhatva-avacchinna)-((gandha-niṣṭha)-

ādheyatā))-nirūpita)-adhikaraṇatā)∧vat-pṛthivī can be represented in

Conceptual Graphs as shown in Figure - 1.

Figure 1: The NNE represented in Conceptual Graphs

‘A picture is worth 1000 words’ so goes an English idiom. The best

way to ease this complexity is by representing the linear structure in a

diagrammatical form. We see use of diagrams to express NNEs since

long, as early as in 20th century. Vamacaraṇabhaṭṭācārya(33) used di-

agrams in his teachings. Later in the 60s, Wada(46) mentions that

Kitagawa started using diagrams to explain the NN theories. In 1987,

V.N.Jha(16) came up with a better solution. He started representing

the NNE in a unique diagrammatic form. This method simplified and

helped the Nyāya as well as other school students to understand the

structure of NN terminology. Later in 1994, Amba Kulkarni put her

efforts to build a bridge between NN and Western logic in her M.Tech

thesis(20). In this connection, she opted Conceptual Graph, a diagram-

6



matic representation scheme to show Navya-Nyāya’s linear structure

in a better way. Next Shrinivasa Varakhedi in his PhD thesis dis-

cussed about Knowledge Representation and used the diagrammatical

representation method to show Navya-Nyāya structure(45). Toshihiro

Wada(46) also used diagrams extensively in his works. Tirumala Ku-

lakarni and Jaideep Joshi also used diagrams(23) to explain the complex

NN terms in an easier way.

But all these efforts are manual. Our goal of research is to build a soft-

ware which renders an NNE diagrammatically, probably automatically

and if needed with some human inputs.
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Chapter 1

Overview

1.1 Introduction
Nyāya (Indian Logic) is one of the fundamental branches of philosophy

in Sanskrit. Kauṭilya in Arthaśāstra emphasizes -

“Pradīpaḥ sarvavidyānām pradīpaḥ sarvakarmaṇām|

Āśrayaḥ sarvadharmāṇām śaśvadanvikṣhikī matā”.

Sage Gautama is known as the founder of Nyāya philosophy. Tak-

ing into consideration the developments in Nyāya, one can classify the

Nyāya literature into two broad divisions.

1. Prācīna-Nyāya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyāya (Modern Logic/Neo-Logic, 1200 AD - till date)

According to the tradition, the period of Prācīna-Nyāya ranges from

Sage Gautama to Gaṅgeśa and post Gaṅgeśa period as Navya-

Nyāya. But a few historians1 consider three divisions - Prācīna-Nyāya,

Madhyama-Nyāya and Navya-Nyāya.

1A History of Indian Logic by Satish Chandra Vidyabhushana.
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In ancient times, debate was one of the important means to express the

thoughts or ideas of one’s own philosophy to the scholars and the com-

mon people as well. Debate or Dialogue used to take place to remove

the confusions in rituals, to highlight the importance of the philosophies

and many other purposes. Traditional scholars from different philo-

sophical backgrounds used to meet often at one place and demonstrate

their views. Some opposition used to raise on it and then the debate

will start between them. Indian intellectual tradition considers debate

seriously and it came up with specific rules regarding the conduct of a

debate. In Nyāyasūtra, 5.2.1 - 24, Sage Gautama himself defines the ni-

grahasthānas. But around 9th century, Śrīharṣha, an Advaita vedāntin

in his work Khaṇḍanakhaṇḍakhādya came up with many fallacies in

Nyāya philosophy. After this, Udayana felt the need of a new technical

language, where there is no ambiguity in expressing the issues. In the

works of Udayana, Ātmatattvaviveka and Nyāyakusumāñjali, we find

the earlier traces and hints towards the necessity of a technical language

and efforts towards its creation. A few decades later, Gaṅgeśa with the

influence of Udayana, came up with an idea to bring unambiguity in the

debate process. Thus he completely concentrated on pramāṇa part, not

on the prameya as Nyāya tradition did. He developed a new technical

language in his monumental work. This gave rise to a new offshoot of

Nyāya, Navya-Nyāya (NN).

The important division between Prācīna and Navya-Nyāya philosophy

is based on fundamental issues. Similar to other philosophies, Prācīna-

Naiyāyikas concentrate on the salvation and they discuss the topics

related to it. But Navya-Naiyāyikas did not stick to this and concen-

trated on pramāṇas and the development of a new technical language.
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Development of new language for the debate made Gaṅgeśa stand apart

from all other philosophers. He emphasized on the development of

many technical terms that brought unambiguity in the process of de-

bate. This technical language influenced all other branches of philos-

ophy in a big way. Of course, Navya-Nyāya also contributed towards

theoretical insights into the Nyāya philosophy.

1.2 Navya-Nyāya
We notice the seeds of Navya-Nyāya in the works of Nyāyakusumāñjali

of Udayana. But later Gaṅgeśa (12th century) provided a strong foot-

ing through his Tattvacintāmaṇi and thus is renowned as the founder of

NN. NN is famous for its sophisticated and unique language to express

the thoughts in an unambiguous way. This language deals with verbal

cognition, logic and epistemology. This Navya-Nyāya Technical Lan-

guage(NNTL) was so much powerful in its unambiguous expressions

that it became the lingua-franca of almost all scholarly works of vari-

ous branches of knowledge such as Mīmāṃsā ‘exegesis’ (38), Vyākaraṇa

‘grammar’ (7), Sāhitya ‘literature’ (14), Jaina philosophy(43), and even

Law(19). In recent times, the importance of this formal language was

also noticed by the computer scientists(4).

1.3 Influence of Navya-Nyāya Technical

Language
The importance and usefulness of the technical language of NN were

noticed by everybody and within no time, it spread across all branches

of knowledge systems.The use of NNTL in Vyākaraṇa made it stand

10



apart from the old texts on Vyākaraṇa and thus resulted in a new

discipline Navya-Vyākaraṇa.

We find two usages of NNTL - to disambiguate a text and to define the

technical terms. Unambiguity being the main criterion in the knowledge

systems, it became one of the important branches of essential studies

for any Sanskrit scholar. Below we give a few glimpses of the pervasion

of NNTL in various branches of knowledge systems, with an example

for each.

• Knowledge Branch: Mīmāṃsā

Text: Mīmāṃsākaustubha of Khanṇḍadeva.

Context: In the Mīmāṃsā sūtra 2.1.4 on the discussion on how

11



vikalpa

12



1.4 Motivation and Goal of research
There are two difficulties in understanding NNTL viz. its linear struc-

ture with long compounds and the concepts associated with the concep-

tual terms. There are noteworthy efforts to understand the conceptual

difficulties by many scholars. Shukla(41) eases the complexity of NN

technical terms by explaining them in a simple and lucid way. Jha(16)

simplifies the big chunk of a Navya Nyāya Expression (NNE) using the

diagrams and explaining the concepts in a simple way. Bhatta(3), with

his uncomplicated way of explanation and using the diagram elabo-

rates the complex invariable concomitance topic. Ingalls(13), Shaw(39),

Mohanty(31), Matilal(28) tried to compare the NN concepts with the

concepts in the Western logic and provide logical representations for

various important concepts such as Vyāpti etc.

The other efforts concentrated on the understanding of the syntax of

NNEs. Kulkarni(20), trying to build a bridge between Navya-Nyāya

and western logic, analyses the NN in a computational perspective using

the modified version of Conceptual Graph. Varakhedi(45) showed the

relevance of NN for the Knowledge Representation. Ganeri(9) provides

the formal description of various primitive terms of NN. Patil(33) uses

the graphical rendering of expressions in his commentary of popular NN

text Tarkasaṃgraha. Kulakarni and Joshi(23) expounds the technical

language of NN in a remarkable way using pictures and graphs. Almost
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every scholar used graphical representation in their texts to explain the

NN concepts.

We chose to concentrate only on the difficulty in the analysis due to

the linear structure of NNE. A single NNE runs into pages, which

is very hard for a human to comprehend2. In spite of a continuous

stream of characters involving arbitrarily long compounds, the cognitive

structure being described by such an expression helps a human mind

to understand them.

1.4.1 Parsing an NN Expression

NN Expressions are used to describe the cognitive structure

(jñānākāraḥ) as well as the physical world around us (sambaddha-

padārthaḥ). An NN Expression is a compound. A compound, in

Sanskrit, is written as a single word without any gap or hyphen in

between the components, with components joined together following

euphonic changes. This makes the processing of Sanskrit compounds

more challenging. Kumar et al. (26) describe the steps involved in

processing Sanskrit compounds and also discuss the associated compu-

tational complexity. The steps are

1. Splitting a compound into components.

This involves undoing euphonic transformations.

2. Analysing its constituent structure.

At this stage, a compound is analysed showing how the compo-

nents are grouped together.

3. Identifying relations between the components.

2You may refer to Miller’s article(29) for more information regarding the human
capacity of understanding.
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Now the relation between the components thus grouped is made

explicit.

4. Providing a paraphrase of the compound.

Finally, a paraphrase of the compound is generated.

We illustrate these steps with two examples: an English one followed

by an NN Expression.

Example 1: Consider the long compound ‘lake water pollution re-

duction log’. We skip step 1 since the components here are already

split.

1. Constituency analysis for this compound is

((((lake-water)-pollution)-reduction)-log)

2. Relations between the components are now marked.

((((lake-water)T7-pollution)T6-reduction)T7-log)T6

Here T stands for Tatpuruṣa (an endo-centric) compound and

the numbers 6 and 7 indicate the genitive and the locative case

markers.

3. The paraphrase of this compound is generated.

Log of the reduction in pollution of water in the lake.

Example 2: Consider the following NN Expression which defines earth

as a substance with the smell as its characteristic property.

gandhatvāvacchinnagandhaniṣṭhādheyatānirūpitādhikaraṇatāvatī. (1)

1. After splitting the compound into its components, we get

gandhatva-avacchinna-gandha-niṣṭha-ādheyatā-nirūpita-

adhikaraṇatā∧vatī.

Here the components are separated by a hyphen and the

derivational suffix ‘-vatī’ is separated by a caret.

2. The constituency parse of this compound is
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((((gandhatva-avacchinna)-((gandha-niṣṭha)-ādheyatā))-

nirūpita)-adhikaraṇatā)∧vatī

3. After identifying the relations between the components, we get

((((gandhatva-avacchinna)T3-((gandha-niṣṭha)T7-

ādheyatā)K)K-nirūpita)T3-adhikaraṇatā)K∧vatī

where K, T3 and T7 stand for karmadhāraya and tatpuruṣa com-

pounds with instrumental and locative case suffixes. These are

all endo-centric compounds, with a requirement of nominative,

instrumental and locative case suffixes during paraphrasing.

4. Finally, the paraphrase of this compound is

Sanskrit: gandhatvena avacchinnā, gandhe niṣṭhā yā ādheyatā,

tannirūpitā adhikaraṇatā∧vatī

Gloss: by_smellness delimited in_smell residing which

substratum-ness determined_by_that superstratum-ness pos-

sessing

English: An object which has superstratum-ness which is deter-

mined by the substratum-ness that is residing in the smell and is

delimited by the smell-ness.

In the traditional oral method of teaching, the teacher used to provide

the paraphrase of such long compounds starting from the innermost

compound, building in a bottom-up approach, joining one component

at a time, explaining the type of the compound. This would then

create a whole knowledge structure in the mind of a student. With the

advancement of new technology, now it is possible to represent the same

knowledge pictorially, which helps a modern student who relies more

on visual aids than memory to understand such complex compounds

easily.
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‘A picture is worth 1000 words’ so goes an English idiom. The best

way to ease this complexity is by representing the linear structure in

a diagrammatical form. We see the use of diagrams to express NNEs

since long, as early as in 20th century. Vamacaraṇabhṭṭācārya(33) used

diagrams in his teachings. Later in the 60s, Wada(47) mentions that

Kitagawa started using diagrams to explain the NN theories. In 1987,

V.N.Jha(16) came up with a better solution. He started representing

the NNE in a unique diagrammatic form. This method simplified and

helped the Nyāya as well as other school students to understand the

structure of NN terminology. Later in 1994, Amba Kulkarni put her

efforts to build a bridge between NN and Western logic in her M.Tech

thesis(20). In this connection, she opted Conceptual Graph, a diagram-

matic representation scheme to show Navya-Nyāya’s linear structure in

a better way. Next Shrinivasa Varakhedi in his PhD thesis discussed

Knowledge Representation and used the diagrammatical representa-

tion method to show Navya-Nyāya structure(45). Toshihiro Wada(47)

also used diagrams extensively in his works. Tirumala Kulakarni and

Jaideep Joshi also used diagrams(23) to explain the complex NN terms

in an easier way.

But all these efforts are manual. Our goal of the research is to

build a software which renders an NNE diagrammatically, probably

automatically and if needed with some human inputs.

1.5 The organisation of thesis
In Chapter 1, we see the introduction of NN and the NNTL and the

usage of NNTL in other philosophies. We state the goal of this research
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as well.

In Chapter 2, we introduce the first step, the segmentation of the NN

Expressions. We discussed all the earlier efforts and our present effort

in this part.

In Chapter 3, we introduce the Constituency Parsing of the NN Ex-

pressions. We elaborate the Context-free grammar written in a parser

generator called ‘Yacc’ and a lexical analyser ‘Lex’. How the parsing

works, how it is developed and what are the salient features of NNE

which helped us making this tool more automatic are elucidated in this

chapter.

In Chapter 4, we introduce the Type-identifier of the NN Expressions.

We analysed the compounds of NNE which helped out in improving

this tool. We discuss the development of this tool in detail.

In Chapter 5, we present the history of graphical representation used

in NN. Then we introduce the usage of the Conceptual Graphs for NN

Expressions. We explain the Conceptual Graphs renderer for an NNE.

In Chapter 6, we demonstrate all the modules packaged together in the

form of a software - Nyāyacitradīpikā with an example. We have put

the screen-shots of each step explaining the flow.

In Chapter 7, we conclude our research work and mention the future

work in this path.

1.6 Contribution of the thesis
The contribution of the thesis is the development of a computational

tool to ease the difficulty in understanding the NN Expressions. This

work has produced a semi-automatic tool to analyse the NNEs. This

tool can segment an NNE according to Nyāya domain, then parse it to
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understand the proper semantic structure of it and then render it in a

graphical form. It also identifies the type of the compound in the NNE.

This work will help the students and teachers of NN to study NN in a

better way.
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Chapter 2

Segmentation for NN

Expressions

The first step in understanding an NNE is to identify the components

in a compound. This process of identifying the components of a com-

pound or continuous language string is called Segmentation. Word

segmentation is important for languages like Sanskrit which is so much

influenced by the oral tradition that the word boundaries undergo eu-

phonic changes resulting into a continuous string of phonemes. The rich

productive morphology resulting into the formation of long compounds

aggravate the problem. There are significant efforts in this area in the

past. Huet(10), Huet and Goyal(11), Hyman(12), Mittal(30), Kumar

et al.(26), Natarajan and Charniak(32) have contributed efficaciously

to this field.

Hyman(12) describes a Finite State Transducer (FST) for the Paninian

sandhi rules. Huet(10) has discussed the segmentation in Sanskrit in

detail and has built an efficient Finite State Automata (FSA) based
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segmenter. Mittal(30) describes two approaches; one using FST and

the other one based on Optimality Theory, by defining the posterior

probability function to choose among the valid splits. Kumar et al.(26)

used different posterior probability function and obtained better results.

Natarajan and Charniak(32) proposed sandhi splitting based on the

Dirichlet process.

The NN school of Indian tradition sees the culmination of productive

compound formation in the form of compounds running into pages.

The components of such compounds are typically formed with more

than one taddhita (secondary derivational) suffixes. Such compounds

also use the technical terms of NN.

Here is an example of linguistic expression in Navya-Nyāya (NNE)

involving a compound with nine components:

samavāyasambandha-avacchinna-gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā-nirūpita-adhikaraṇatāvatī.

For the sake of readability we show the components split by ‘-’, but

in the printed texts this is written as a single word with underlying

phonological changes as

samavāyasambandhāvacchinnagandhatvāvacchinnagandhaniṣṭhādheyatā

nirūpitādhikaraṇatāvatī.
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All the efforts related to segmentation described earlier had focused on

general Sanskrit texts. But for much more complex and domain-specific

inputs like NNE, which is known for long compounds, use of technical

vocabulary and productive use of secondary derivational suffixes (tad-

dhita) a specially trained segmenter is needed.

We report below on our efforts in building a segmenter for NNE, in

two stages. First, we report our initial efforts using Heritage en-

gine, followed by building a special morphological analyser and its

use for segmentation in Sanskrit Computational Linguistics Platform

(SCL/

2.1 Preparation of Gold data

Āloka Tarkasaṅgraha Pañcalakṣaṇīsar-

vasvam Āloka

Pañcalakṣaṇīsarvasvam Math-

urānātha

Āloka
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prātipadikam

Figure 2.1: FSA showing possible taddhita suffixes in NNE

2.2 Sanskrit Heritage Reader for NNEs
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taddhita

tad-

dhita tal tva matup

taddhita

pada

Problems in Heritage segmenter

n n
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Figure 2.2: First problem in Heritage segmenter

nirūpita avacchinna samānādhikaraṇa

ni-rūpita ava-chinna samāna-adhi-karaṇa
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Figure 2.3: Second problem in Heritage segmenter

samānādhikaraṇa

samāna-adhi-karaṇa vyadhikaraṇa

vi-adhi-karaṇa

Naiyāyika
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1

Added some technical terms of Navya-Nyāya to the lex-

icon.

vāraka, anumāpaka

Displaying words with their prefix as a single word.

nirūpita ni

rūpita

nirūpita

ni-rūpita

ni rūpita

Segments inchoative compound(cvi).

1I acknowledge here the Raman-Charpak Scholarship awarded by the CEFIPRA
for the duration March’15-June’15 that enabled me to work closely with Prof.
Gérard Huet at Inria, Paris.

27



adhikaraṇībhūtābhāvaḥ adhikaraṇībhūta-abhāvaḥ

2.3 Saṁsādhanī for NNEs

taddhita

Āloka

artha ātmaka pūrvaka

vidha kara in

fine compositi samāsa-uttarapada

taddhita
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Figure 2.4: ifcs(in fine compositi or samāsa-uttarapada) found in NNEs

taddhita ka

kṛt

taddhita ka bahuvrīhi

dhūmahetuka

dhūmahetukā

in initio compositi samāsa-pūrvapada

puṁvadbhāva2

dhūmahetuka

2The condition for puṁvadbhāva is given in Paninian sūtra 6.3.42. It says -
In Karmadhāraya compound and in those cases where the second component of a
compound ends in a jātīya or deśīya suffix, the word in the feminine gender will
assume the bhāṣitapuṃska ‘expressed as a masculine’ form.
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kṛt

ṇvul kta
3

pācakastrī

pācikāstrī

sūtra

puṃvatkarmadhārayajātīyadeśīyeṣu

sambandhāvacchinna sambandha

+avacchinna sambandha +ava +chinna

avacchinna

3The technical term for such base forms in Sanskrit is the one with puṁvadbhāva.
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Algorithm of SCL-NN segmenter

u → v+w; f, f

4 u v

w

u

u

adhikaraṇatānirūpaka

adhikaraṇatā + nirūpaka
4This corpus developed by Sanskrit Consortium, which is manually tagged of

around 150K words and has around 30K examples of compound words. Refer -
“Statistical Constituency Parser for Sanskrit Compounds” of Amba Kulkarni and
Anil Kumar, ICON-2011.
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adhikaraṇatā + anirūpaka

ān → ā + n

ā → ā + a

adhikaraṇatā + nirūpaka

adhikaraṇatā + anirūpaka

ā a+a a+ā ā+a

ā+ā

avacchinnakāryatā

avacchinnaka+āryatā

avacchinna+kāryatā

ka taddhita
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pratiyogitānirūpaka

pratiyogitā+nirūpaka ān → ā+n pratiyog-

itā+anirūpaka ā → a+a pratiyogitā

prati+yogitā nirūpaka ni+rūpaka

puṁvadbhāva

niṣṭhā+ādheyatā niṣṭhādheyatā Puṁvadbhāva

niṣṭha+ādheyatā

Analysis of the Result

Precision and Recall

Āloka Tarkasaṅ-

graha

No of Solutions No of Cases
0-100 10
101-1,000 15
1,001-100,000 18
100,000 5
Time-out 1
Total 49

Table 2.1: Number of solutions of Sanskrit Heritage Splitter
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No of Solutions No of Cases
0-5 14
6-10 11
11-100 18
101-1000 5
1000 1
Total 49

Table 2.2: Number of solutions of SCL-NN Splitter

Pañ-

calakṣaṇīsarvasvam

No of Solutions No of Cases Percentage
0-5 196 55.7
6-10 56 15.9
11-100 72 20.4
101-1000 13 3.6
1000 3 1
No Split 12 3.4
Total 352 100

Table 2.3: Number of solutions of SCL-NN Splitter

Correct Solution
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Pañcalakṣaṇīsarvasvam

Position No. of Cases Percentage
1 42 86
2 2 4
3 4 8
7 1 2
Total 49 100

Table 2.4: Position of the correct solution in the Development data

Position No. of cases Percentage
1 264 75
2-5 42 11.9
6-10 6 1.7
11-100 7 2.0
101 2 0.6
No Split 12 3.4
No-correct solution 19 5.4
Total 352 100

Table 2.5: Position of the correct solution in the test data

2.4 Saṁsādhanī-NN Segmenter with con-

trolled lexicon
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No of solutions Cases Percentage
1 340 96.59
2 12 3.40
Total 352 100

Table 2.6: Performance of Saṁsādhanī-NN splitter on test data

Pañcalakṣaṇīsarvasvam
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Chapter 3

Constituency Parser for NNE

a-b-c

(a-(b-c)) ((a-b)-c)

sāmarthya

sāmarthya
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3.1 Syntax of NN Expressions

Primitive Terms

ghaṭa bhūtala gandha

Abstract Functor

Relational Abstract Expressions

pitṛ

pitṛtva

putratva ādheyatā

adhikaraṇatā

Conditioning Operator

nirūpita
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X-nirūpita-pitṛtva

Sentence-forming Operator

niṣṭha avacchinna

Negation Functor

abhāvaḥ

tva

ghaṭa-niṣṭha-ghaṭatvam

ghaṭa-bhedatvam ghaṭatvam

ghaṭa ghaṭa anuyogin

pratiyogin niṣṭha ghaṭa ghaṭatvam

ghaṭa-bheda tva bheda ghaṭa-

bheda
∧

∧

tva
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ghaṭapaṭatvavat sādhyābhāvavat
∧

∧

vat tva
∧

primitive terms rela-

tional abstract expressions Condition-

ing operators sentence-forming operators

abstract functor

abstract functor

tva vat

Ganeri’s classification Our classification
Primitive term

Relational Abstract Expression Conceptual term
Negation functor
Abstract functor

Conditioning Operator Conceptual Relation
Sentence-forming Operator

Table 3.1: Difference of classification
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3.2 Some salient features of NNEs

gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā gandhatva gandha

ādheyatā avacchinna

niṣṭha

anuyogin

pratiyogin

pratiyogin anuyogin

pratiyogin

anuyogin

gandha-niṣṭha-ādheyatā gandha pratiyogin ād-

heyatā anuyogin niṣṭha

((gandha-niṣṭha)-ādheyatā) (gandha-(niṣṭha-

ādheyatā)) Pratiyogin

Anuyogin

anuyogin
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anuyogin

samavāyasambandha-avacchinna-gandha-niṣṭha-

ādheyatā anuyogin avacchinna ādheyatā

dravyatva-avacchinna-gandha-niṣṭha-ādheyatā anuyogin

avacchinna gandha

anuyogin

anuyogin

anuyo-

gin kth anuyogin

‘nirūpita’

pratiyogin nirūpita

anuyogin

pratiyogin

pratiyogin anuyogin nirūpita
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3.3 Building a constituency Parser
anuyogin

pratiyogin

anuyogin

samavāyasambandha-avacchinna-gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā-nirūpita-adhikaraṇatāvat-vastu

anuyogin

nirūpita ādheyatā pratiyogin
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Figure 3.1: A screen-shot of the interface

adhikaraṇatā anuyogin

8 nd avacchinna anuyogin
th th

anuyogin

anuyogin gandha

gandha tva

pratiyogin gandha anuyogin tva

anuyogin rd gandha
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Figure 3.2: A screen-shot of the interface after user-selection

ghaṭa-abhāva-vat-avṛttitvam

ghaṭa abhāva

ghaṭa-abhāva vat avṛttitvam

ghaṭa abhāva

pratiyogin ghaṭa anuyogin abhāva

anuyogin ghaṭa

anuyogin

pratiyogin

anuyogin
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Chapter 4

Type-Identifier

4.1 Earlier efforts

gandhatvā-

vacchinna gandhatvena avacchinna ghaṭāb-

hāvaḥ ghaṭasya abhāvaḥ

Tatpuruṣa

“Development of Sanskrit Computational Tools and Sanskrit-Hindi

Machine Translation System”
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4.2 Analysis of NNE compounds

Dvandva Bahupada-Bahuvrīhi Bahupada-Tatpuruṣha

avacchinna nirūpita niṣṭha
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pūrvapada

uttarapada

ghaṭatva-avacchinna avacchinna

ghaṭatva-avacchinna-

ādheyatā ((ghaṭatva-avacchinna)-ādheyatā)

avacchinna ghaṭatva-

avacchinna

ādheyatā
1 niṣṭha

nirūpita

Semantics of compounds with avacchinna as one component

avacchinna

((X-avacchinna)-Y)

((ghaṭatva-avacchinna)-ādheyatā) ghaṭatvena-

avacchinnā yā sā ādheyatā

((X-

avacchinna)-Y)

1samastapada-garbhita-samāsa
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Tṛtīyā-Tatpuruṣa

Viśeṣaṇa-pūrvapada-

Karmadhāraya

Semantics of compounds with niṣṭha as one component

niṣṭha

avacchinna

((X-niṣṭha)-Y)

((ghaṭa-niṣṭha)-ghaṭatvam) ghaṭe-niṣṭham yat

tat ghaṭatvam ((X-niṣṭha)-Y)

avacchinna yat tat

Saptamī Tatpuruṣa

Semantics of compounds with nirūpita as one component

nirūpita

((X-nirūpita)-Y)

((ādheyatā-nirūpita)-adhikaraṇatā)

ādheyatayā-nirūpitā yā sā adhikaraṇatā

((X-nirūpita)-Y)
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Tṛtīyā-Tatpuruṣa

Appendix B

st nd

4.3 Context-free grammar

‘Chomsky hierarchy’
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st nd

Appendix-B

NNE : compound
;

compound : Ppada ‘-’ Upada
;

Ppada : ‘(’ pada
;

Upada : pada ‘)’
;

pada : compound
| concept
;

Table 4.1: Context-free Grammar to identify the compound-types

pūrvapada

uttarapada
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NNE : compound
;

compound : Ppada ‘-’ Upada
↑.type = f(Ppada.head, Upada.head)

;
Ppada : ‘(’ pada

↑.head = pada.head
;

Upada : pada ‘)’
↑.head = pada.head

;
pada : compound

↑.head = ↓.head
| concept

↑.head = ↓.head
;

Table 4.2: Production rules with attributes

((gandha-niṣṭha)-

ādheyatā) (gandha pūrvapada niṣṭha)

uttarapada

((gandha-niṣṭha) pūrvapada ādheyatā) uttarapada

gandha

ādheyatā niṣṭha

niṣṭha uttarapada

Saptamī-Tatpuruṣha pūr-

vapada Viśeṣaṇa-pūrvapada-

Karmadhāraya avacchinna uttarapada

Tṛtīyā-Tatpuruṣha pūrva-

pada Viśeṣaṇa-pūrvapada-Karmadhāraya
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((gandha-niṣṭha)-ādheyatā)

Figure 4.1: Constituency parse corresponding to the grammar

gandha-

niṣṭha niṣṭha

((gandha-

niṣṭha)-ādheyatā) ādheyatā pūrvapada niṣṭha

54



Figure 4.2: Head-info computed according to the grammar - step 1

Figure 4.3: Head-info computed according to the grammar - step 2
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((gandha-niṣṭha)T7-ādheyatā)

4.4 Analysis of the result

Viśeṣaṇa-pūrvapada-Karmadhāraya Tṛtīyā-Tatpuruṣha

Śaṣhṭhī-Tatpuruṣha Śaṣhṭhyartha-Bahuvrīhi Saptamī-

Tatpuruṣa Sambhāvanā-pūrvapada-Karmadhāraya Pañcamī-

Tatpuruṣha Samāhāra-Dvigu

4.5 Conclusion
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Tag No. of cases
K1 283
Bs6 203
T6 186
T3 178
T7 74
K6 45
T5 13
Tds 7
Total 989

Table 4.3: Frequency distribution of identified compound types
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Chapter 5

Graphical Representation

5.1 Earlier efforts
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Figure 5.1: The graphs used by traditional scholars
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5.2 What is Conceptual Graph?

Figure 5.2: An example of CG
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se-

mantic networks Correlational nets

Dependency Graph

Figure 5.3: General form of CG
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gandha-niṣṭha-gandhatvam

Figure 5.4: General form of an NNE

Graphviz 1

5.3 Conceptual Graphs for NN Expres-

sion

1www.graphviz.org
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Sanskrit Rāma-nirūpita-pitṛtva∧vān Daśarathaḥ

Gloss

English

Sanskrit Rāma-niṣṭha-putratva-nirūpita-pitṛtva∧vān Daśarathaḥ

English

pitṛtva

putratva

niṣṭha (residing in), nirūpita

vān

nirūpita
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Figure 5.5: Conceptual Graph for (4)

Figure 5.6: Conceptual Graph with position information for (4)

Sanskrit Rāmaḥ hastena brāhmaṇāya dhanam dadāti

Gloss

English
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Sanskrit rāma-niṣṭha-kartṛtva-nirūpaka-hasta-niṣṭha-karaṇatva-

nirūpaka-brāhmaṇa-niṣṭha-sampradānatva-nirūpaka-dhana-niṣṭha-

karmatva-nirūpaka-dānakriyā

English

Figure 5.7: Conceptual Graph with position information for (6)
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Sanskrit hasta-niṣṭha-karaṇatva-nirūpaka-brāhmaṇa-niṣṭha-

sampradānatva-nirūpaka-dhana-niṣṭha-karmatva-nirūpaka-dānakriyā-

anukūla-kṛti-vat-rāmaḥ

English

Figure 5.8: Conceptual Graph with position information for (7)

samavāyasambandha-avacchinna-gandhatva-avacchinna-

gandha-niṣṭha-ādheyatā-nirūpita-adhikaraṇatā∧vat-pṛthivī
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avacchinna niṣṭha vat

nirūpita

gandhatva gandha adhikaraṇatā

ādheyatā

Naiyāyika

Sanskrit ghaṭa-niṣṭha-ādheyatā-nirūpita-adhikaraṇatā∧vat bhūtalam.

English
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Figure 5.9: Conceptual Graph for (1)

2

Figure 5.10: Conceptual graph corresponding to (9)

3

Sanskrit bhūtala-niṣṭha-adhikaraṇatā-nirūpita-ādheyatā∧vān ghaṭaḥ

2ghaṭavadbhūtalam ‘pot-possessing-ground’.
3bhūtale ghaṭaḥ ‘pot on the ground’
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English

vān niṣṭha

Figure 5.11: Conceptual graph corresponding to (10)

5.4 Compressed CGs

Figure 5.12: An instance of SCL graph
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Figure 5.13: SCL graph corresponding to (10)

5.5 Grammar of NN Expressions

G

N

T

NNE

P
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NNE : compound_concept
;

compound_concept : ‘(’ compound_relation ‘−’ concept_term ‘)’
;

compound_relation | ‘(’ concept_term ‘−’ relation_term ‘)’
;

concept_term : concept
| NNE
;

relation_term : relation
;

Table 5.1: Production rules

tva

niṣṭha avacchinna

nirūpita vṛtti āśraya

avacchedaka nirūpaka

5.6 NN Expressions to Conceptual

Graphs

paryāpti
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NNE : compound_concept
↑.head = ↓.head

;
compound_concept : ‘(’ compound_relation ‘−’ concept_term ‘)’

↑.head = concept_term.head
establish a link between the head of the
compound_relation to the head of the concept_term

;
compound_relation | ‘(’ concept_term ‘−’ relation_term ‘)’

↑.head = relation_term.head
establish a relation between the head of the
concept_term to the head of the relation_term

;
concept_term : concept

↑.head = ↓.position
draw a concept node

| NNE
↑.head = ↓.head

;
relation_term : relation

↑.head = ↓.position
draw a relation node

;

Table 5.2: Production rules with attributes

intrinsic

concept relation
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compound_relation compound_concept

5.6.1 An illustration

<< > >

position label

niṣṭha
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Figure 5.14: Constituency parse corresponding to the grammar

Compound_Concept
XXXXX

�����
Compound_Relation

HHH
���

gandha niṣṭha

ādheyatā

Figure 5.15: Compact parse - 1
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Compound_Concept
XXXXX

�����
Compound_Relation

aaa
!!!

concept

gandha

relation

niṣṭha

concept

ādheyatā

Figure 5.16: Compact parse with position information

[
Position = 1
Label = gandha

]
Position = 2
Label = niṣṭha
Left = 1
Right = ?


[

Position = 3
Label = ādheyatā

]
PPPP

����

HHH
���

gandha niṣṭha

ādheyatā

Figure 5.17: Compact parse

Figure 5.18: concept node acquires the ‘head’ position from child
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Figure 5.19: relation term inherits the ‘head’ position

Figure 5.20: relation node inherits the position of 2nd relata
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nd

niṣṭha

sādhyābhāvādhikaraṇanirūpita nirūpita

sādhya abhāva adhikaraṇa

NNE : compoundC

;

compoundC : '<' compoundR '-' concept_term '>'

| '<' concept_term '-' concept_term '>'

;

compoundR : '<' concept_term '-' rel_term '>'
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;

concept_term : NNE

| concept

;

rel_term : relation

;

Figure 5.21: CG generated by modified grammar
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Chapter 6

Nyāyacitradīpikā

Nyāyacitradīpikā

Nyāyacitradīpikā

anuyogin

anuyogin
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Figure 6.1: Homepage of Nyāyacitradīpikā with two modes

Nyāyacitradīpikā
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Figure 6.2: Segmented output from SCL segmenter

pṛthivī lakṣhaṇa
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Figure 6.3: user interface to select anuyogin

anuyogin

anuyogin

82



Figure 6.4: Completely disambiguated NNE

anuyogin
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Figure 6.5: Conceptual Graph (CG) of the selected NNE
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Figure 6.6: Compressed CG of the selected NNE
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Figure 6.7: Identified compound types of the selected NNE
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Chapter 7

Conclusion
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Future directions
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Appendices
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A - Table of Semantic classifications
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B - Relation terms along with the possible

type of the compound
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C - Programs of all the tools

Segmenter program

#!/usr/bin/perl

my $myPATH="/home/arjun/scl";

use GDBM_File;

tie(%LEX1,GDBM_File,"$myPATH/NN/segmenter/S1.dbm",

GDBM_READER,0644) || die "can't open S1.dbm ";

tie(%LEX2,GDBM_File,"$myPATH/NN/segmenter/S2.dbm",

GDBM_READER,0644) || die "can't open S2.dbm ";

tie(%LEX3,GDBM_File,"$myPATH/NN/segmenter/S3.dbm",

GDBM_READER,0644) || die "can't open S3.dbm ";

tie(%LEX4,GDBM_File,"$myPATH/NN/segmenter/S4.dbm",

GDBM_READER,0644) || die "can't open S4.dbm ";

require "$myPATH/NN/segmenter/nyAya_words.pl";

$Max_Word_Size=25;

while($in = <STDIN>){

chomp($in);

$found = "";

%SPLIT = ();

98



%SPLIT_CHECKED = ();

($ans, $found) = split("#", &split_recursive_sandhi($in,0,""));

$ans = &prioritise($ans);

@ans = split("/",$ans);

$ans_found = 0;

foreach $a (@ans) {

print $a,"\n";

$ans_found++;

}

if(!$ans_found) { print "No answer found \n";}

elsif($ans_found == 1) { print "One answer found \n";}

else { print "$ans_found answers found\n";}

}

sub split_recursive_sandhi{

my($in,$absolute_position,$found) = @_;

my($wrd1,$wrd2,$i,$k,$final_ans,$ans,@t,$t,$len,

$pUrva,$str2Bmatched,$uttara,$fld1,$fld2,$fld3,

@ans,$local_found,$m,$position,

$local_ans,$lex,$tmp,$wrd2_position,$l);

$len = length($in);

$final_ans = "";

if($len < $Max_Word_Size) { $i = $len;}

else {$i = $Max_Word_Size;}
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$max_window_size = 4;

while($i>0) {

$local_found = $found;

for($k=$max_window_size; $k>=1; $k--){

if($i + $k < $len) {

$local_ans = "";

if($debug) {print "k = $k\n";}

$in =~ /^(.{$i})(.{$k})(.*)$/;

$pUrva = $1;

$str2Bmatched = $2;

$uttara = $3;

$lex = "LEX".$k;

if(${$lex}{$str2Bmatched}) {

@ans = split(/#/,${$lex}{$str2Bmatched});

for ($m = 0; $m <= $#ans; $m++ ){

if($debug) { print "sandhi Rule: $ans[$m]\n";}

($fld1,$fld2,$fld3) = split(/,/,$ans[$m]);

$tmp=$in;

$tmp =~ s/^$pUrva$str2Bmatched$uttara$/$pUrva$fld1 $fld2$uttara/;

($wrd1, $wrd2) = split(/ /,$tmp);

$position = $absolute_position+length($pUrva).",".$fld3;

$wrd2_position = $absolute_position+length

($pUrva)+length($str2Bmatched)-length($fld2)+1;
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if((!&split_boundary_pos($position,$found)

&& !&from_non_pUrvapaxa_list($wrd2)

&& !&from_non_pUrvapaxa_list($wrd1))){

if((length($wrd1) < $Max_Word_Size)

&& !$MO_CHECKED{$wrd1}){

if($debug) {print "Calling morph for $wrd1\n";}

$MO{$wrd1} = &get_morph_ana($wrd1);

if($debug) {print "$MO{$wrd1}\n";}

$MO_CHECKED{$wrd1} = 1;

}

if((length($wrd2) < $Max_Word_Size)

&& !$MO_CHECKED{$wrd2}){

if($debug) {print "Calling morph for $wrd2\n";}

$MO{$wrd2} = &get_morph_ana($wrd2);

if($debug) {print "$MO{$wrd2}\n";}

$MO_CHECKED{$wrd2} = 1;

}

if($MO{$wrd1} && $MO{$wrd2}) {

$local_ans .= "/".$wrd1."{$fld3}".$wrd2;

if($position ne "") {

$local_found = &add_position($local_found,$position);

}

}

elsif($MO{$wrd1}) {

if(!$SPLIT_CHECKED{$wrd2}) {
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($ans,$sub_found) = split(/#/,

&split_recursive_sandhi($wrd2,$wrd2_position-1,$found));

} elsif($SPLIT{$wrd2})

{ $ans = $SPLIT{$wrd2};}

else {$ans = "";}

if($ans ne "") {

if($position ne "") {

$local_found =

&add_position($local_found,$position);

}

@sub_found = split(/#/,$sub_found);

foreach $l (@sub_found) {

if($l ne "") {

$local_found =

&add_position($local_found,$l);

}

}

$ans =~ s/\/\//\//g;

$ans =~ s/^\///g;

@t = split("/",$ans);

foreach $t (@t) {

$local_ans .= "/".$wrd1."{$fld3}".$t;

}

}
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}

}

}

}

if($local_ans) {

$final_ans .= "/".$local_ans;

}

}

}

$found = $local_found;

$found =~ s/^#//g;

$i--;

$SPLIT{$in} = $final_ans;

$SPLIT_CHECKED{$in} = 1;

$final_ans =~ s/\/\//\//g;

$final_ans =~ s/^\///g;

$final_ans."#".$found;

}

1;

sub get_morph_ana{

my($word1) = @_;

my($ans);

system("$myPATH/NN/segmenter/client_splitter.sh
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$word1 | grep . | grep -v '\*'> /tmp/SKT_TEMP/tt");

if(-s "/tmp/SKT_TEMP/tt") { $ans = 1;} else { $ans = 0;}

system("rm /tmp/SKT_TEMP/tt");

return $ans;

}

1;

sub split_boundary_pos{

my($start,$found) = @_;

my(@found,$f);

@found = split(/#/,$found);

foreach $f (@found) {

if($f eq $start) {

return 1;}

}

return 0;

}

1;

sub add_position {

my($str,$pos) = @_;

$str =~ s/\-/:/g;

$pos =~ s/\-/:/g;

$str =~ s/\+/;/g;

$pos =~ s/\+/;/g;

if(($str !~ /^$pos#/) &&

($str !~ /^$pos$/) &&

($str !~ /#$pos#/) &&

($str !~ /#$pos$/)){
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$str .= "#".$pos;

}

$str =~ s/:/-/g;

$str =~ s/;/+/g;

$str;

}

1;

sub from_non_pUrvapaxa_list {

my($w) = @_;

if($w eq "ava-") { return 1;}

if($w eq "avacCinnA-") { return 1;}

if($w eq "anu-") { return 1;}

if($w eq "Cexa-") { return 1;}

if($w eq "Cexaka-") { return 1;}

if($w eq "CexakawA-") { return 1;}

if($w eq "Cexakawva-") { return 1;}

if($w eq "Cexya-") { return 1;}

if($w eq "CinnA-") { return 1;}

if($w eq "nirUpiwA-") { return 1;}

if($w eq "niRTA-") { return 1;}

if($w eq "nis-") { return 1;}

if($w eq "paryApwA-") { return 1;}

if($w eq "pra-") { return 1;}

if($w eq "prawiyogikA-") { return 1;}

if($w eq "rUpiwa-") { return 1;}

if($w eq "SAlI-") { return 1;}
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if($w eq "Taka-") { return 1;}

if($w eq "TakA-") { return 1;}

# The viSeRaNa (BARiwa puMlinga, undergoes puMswva

in bahuvrIhi and karmaXAraya compounds

if($w eq "viSeRaNA-") { return 1;}

if($w =~ /^akawA/) { return 1;}

if($w =~ /^araN/) { return 1;}

if($w =~ /^avaw/) { return 1;}

if($w =~ /^AraN/) { return 1;}

if($w =~ /^Cinna/) { return 1;}

if($w =~ /^Cexaka/) { return 1;}

if($w =~ /^CexakI/) { return 1;}

if($w =~ /^iRyakawA/) { return 1;}

if($w =~ /^kawA/) { return 1;}

if($w =~ /^raN/) { return 1;}

return 0;

}

sub prioritise{

my($ans) = @_;

my($low,$high,@ans,$oneans,$word,@words,$count,$max_count,$i,@ANS);

@ans = split("/",$ans);

$max_count = 0;

foreach $oneans (@ans) {

$curr_ans = $oneans;

$oneans =~ s/[ ][a-zA-Z]+[ ]*;.*//;
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@words = split(/ /,$oneans);

$count = 0;

foreach $word (@words) {

if($NYAYA_words{$word}) { $count++;}

}

$ANS[$count] .= "/". $curr_ans;

if($max_count < $count) { $max_count = $count;}

}

$ans = "";

foreach ($i=$max_count; $i >= 0 ; $i--){

if($ANS[$i] ne "") { $ans .= "/". $ANS[$i];}

}

$ans =~ s/\/\/+/\//g;

$ans =~ s/^\///;

$ans;

}

1;
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Constituency Parser program

Lex program

%{

#include "nneparse.tab.h"

%}

%option noinput

%option nounput

%%

niRTa|vqwwi|avacCinna|nirUpiwa|nirUpaka|avacCexaka|

ASraya|SAl[iI]|vaw|vawI|vawyaH|vAn|ka{strcpy

(yylval.nodeinfo.token,yytext);return sambanXaH;}

[^-\n]+ {strcpy(yylval.nodeinfo.token,yytext);return concept;}

\n { return '\n';}

\-{ return '-';}

%%

Yacc program

%union {

struct node{

char token[1000];

} nodeinfo;

}

%{

#include <stdlib.h>
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#include <stdio.h>

#include <string.h>

struct termstruct{

char word[1000];

char type[10];

char pratiyogin[10];

char anuyogin[100];

} terminfo[100];

int counter,i,relation_found;

char tmp[100];

extern int debug;

int yylex();

int yyerror();

%}

%token <nodeinfo> sambanXaH

%token <nodeinfo> concept

%type <nodeinfo> terms

%type <nodeinfo> TC

%type <nodeinfo> TR

%%

examples: example

| examples example
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;

example: terms '\n' {

for(i=1;i<counter;i++){

printf("@%s\t",terminfo[i].type);

printf("%s\t",terminfo[i].word);

printf("%d\t",i);

//if(!strcmp(terminfo[i].type,"relation")){

if(strcmp(terminfo[i].pratiyogin,"")){

printf("%s\t",terminfo[i].pratiyogin);

} else { printf("-\t");}

//if(!strcmp(terminfo[i].type,"relation")){

if(strcmp(terminfo[i].anuyogin,"")){

printf("%s\n",terminfo[i].anuyogin+1);

// first char is ',', to ignore it,

we start printing from +1 position

} else { printf("-\n");}

}

}

;

terms: terms '-' TR

| terms '-' TC

| TC

;

TC: concept { strcpy(terminfo[counter].word,$1.token);

strcpy(terminfo[counter].type,"concept");

sprintf(tmp,"%d",counter);

for(i=1;i<counter;i++){
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if(!strcmp(terminfo[i].type,"relation")){

strcat(terminfo[i].anuyogin,",");

strcat(terminfo[i].anuyogin,tmp);

}

}

if(!strcmp(terminfo[counter-1].type,"concept")) {

sprintf(tmp,"%d",counter-1);

strcat(terminfo[counter-1].pratiyogin,tmp);

}

counter++;

}

;

TR: sambanXaH {

strcpy(terminfo[counter].word,$1.token);

strcpy(terminfo[counter].type,"relation");

sprintf(tmp,"%d",counter-1);

strcat(terminfo[counter].pratiyogin,tmp);

counter++;

}

;

%%

#include <stdio.h>

#include <stdlib.h>

int debug;

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);
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return (0);

}

int main(int argc, char *argv[]){

counter = 1;

for(i=1;i<100;i++){

strcpy(terminfo[i].anuyogin,"");

strcpy(terminfo[i].pratiyogin,"");

}

debug = 0;

if(argc > 1) {

if(index(argv[1],'D')) debug=1;

}

yyparse();

return 1;

}
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Graph renderer program

Lex program

%{

#include "nne2diagram.tab.h"

int type;

%}

%option noinput

%option nounput

%x LEVEL

%%

niRTa {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

vqwwi {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

avacCinna {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

nirUpiwa {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

nirUpaka {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

avacCexaka {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

ASraya {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

SAl[iI]|vaw|vawI|vawyaH|vAn

{strcpy(yylval.nodeinfo.token,"vaw");return sambanXaH;}

ka {strcpy(yylval.nodeinfo.token,"ka");return sambanXaH;}

aBexa {strcpy(yylval.nodeinfo.token,"aBexa");return sambanXaH;}

[a-zA-Z]+wva

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=3;

return concept;}

[a-zA-Z]+wA
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{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=3;

return concept;}

[a-zA-Z]+

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=1;

return concept;}

niRTa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ; BEGIN LEVEL;}

vqwwi:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

avacCinna:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

nirUpiwa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

nirUpaka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

avacCexaka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

ASraya:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH;BEGIN LEVEL;}
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SAl[iI]:|vaw:|vawI:|vawyaH:|vAn:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"vaw"); type=sambanXaH ;BEGIN LEVEL;}

ka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"ka"); type=sambanXaH ;BEGIN LEVEL;}

aBexa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"aBexa"); type=sambanXaH ;BEGIN LEVEL;}

[a-zA-Z]+wva:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

[a-zA-Z]+wA:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

[a-zA-Z]+:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

<LEVEL>[0-9]+

{yylval.nodeinfo.level=atoi(yytext); BEGIN INITIAL; return type;}

\n { return '\n';}

\<{ return '<';}

\>{ return '>';}

\-{ return '-';}

%%
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Yacc program

%union {

struct node{

char token[1000];

int level;

int next_level;

int head;

} nodeinfo;

}

%{

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct termstruct{

char word[1000];

char type[10];

int level;

} terminfo[100];

struct relstruct{

char relname[100];

int from;

int to;

int level;

} relinfo[200];
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int T_counter;

int rel_counter;

int i,j,k,found,min,max;

extern int debug, cg_or_real;

extern int getmin(), getmax();

extern char level[10][100];

int yylex();

int yyerror();

%}

%token <nodeinfo> sambanXaH

%token <nodeinfo> concept

%type <nodeinfo> NNE

%type <nodeinfo> compoundC

%type <nodeinfo> compoundR

%type <nodeinfo> concept_term

%type <nodeinfo> rel_term

%%

examples: example

| examples example

;

example: NNE '\n' {

printf("@digraph @G\n{\n");

printf("@labelfloat=@true;\n");

max = 1;

for(i=1;i<=T_counter;i++){
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j = terminfo[i].level;

if (j > max) max = j;

sprintf(level[j],"%s

@Node%d",level[j],i);

}

for(i=1;i<T_counter;i++){

printf("@Node%d\t[@label=\"%s

(%d)\" ",i,terminfo[i].word,i);

printf("@fontcolor=\"@red\"

@shape = \"@box\" ]\n");

}

for(i=1;i<rel_counter;i++){

if(cg_or_real == 2) {

printf("@Node%d -> @Node%d

[@label=%s]\n",relinfo[i].from,

relinfo[i].to,relinfo[i].relname);

}

if(cg_or_real == 1) {

printf("@Node%da\t[@label=\"%s

\" ",i,relinfo[i].relname);

printf("@fontcolor=\"@blue\"

@shape = \"@oval\" ]\n");

printf("@Node%d -> @Node%da \n",

relinfo[i].from,i);

printf("@Node%da -> @Node%d \n",

i,relinfo[i].to);

j = relinfo[i].level;
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if (j > max) max = j;

sprintf(level[j],"%s @Node%da",

level[j],i);

}

}

for(j=1;j<=max;j++){

printf("%d [@style=@invis]\n",j);

}

printf("{ ");

for(j=1;j<max;j++){

printf("%d ->",j);

}

printf("%d",j);

printf(" [@style=@invis]\n}\n");

for(j=1;j<=max;j++){

printf("{@rank=@same %d %s}\n",j,

level[j]);

}

printf("@rankdir=@TB}\n");

T_counter=1;

rel_counter=1;

}

;

NNE: compoundC {
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$$.head = $1.head;

$$.level = $1.level;

}

;

compoundC: '<' compoundR '-' concept_term '>' {

relinfo[rel_counter].from = $2.head;

relinfo[rel_counter].to = $4.head;

strcpy(relinfo[rel_counter].relname,$2.token);

relinfo[rel_counter].level=$2.level;

rel_counter++;

$$.head = $4.head;

$$.level = $4.level;

}

| '<' concept_term '-' concept_term '>' {

relinfo[rel_counter].from = $2.head;

relinfo[rel_counter].to = $4.head;

strcpy(relinfo[rel_counter].relname,"@R");

rel_counter++;

$$.head = $4.head;

$$.level = $4.level;

}

;

compoundR: '<' concept_term '-' rel_term '>'{

$$.head = $2.head;

strcpy($$.token,$4.token);
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$$.level = $4.level;

}

;

concept_term: NNE {

$$.head = $1.head;

if(debug) { printf("NNE\n");

fflush(stdout);}

}

| concept {

strcpy(terminfo[T_counter].word,$1.token);

strcpy(terminfo[T_counter].type,"concept");

terminfo[T_counter].level=$1.level;

$$.level = terminfo[T_counter].level;

$1.head = T_counter;

T_counter++;

$$.head = $1.head;

if(debug) {printf("concept_term = %s

pos = %d type = concept\n",

$1.token,T_counter);fflush(stdout);}

}

;

rel_term: sambanXaH {

strcpy($$.token,$1.token);

$$.head = $1.head;

$$.level = $1.level;
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if(debug) {printf("relation = %s

pos = %d type = relation\n",

$1.token,T_counter);fflush(stdout);}

}

;

%%

#include <stdio.h>

#include <stdlib.h>

int debug;

int cg_or_real;

char level[10][100];

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);

return (0);

}

int main(int argc, char *argv[]){

T_counter = 1;

rel_counter = 1;

min = 1;

max = 3;

debug = 0;

cg_or_real = 2;

/* By default it produces a graph that is close to reality.

cg(C) = 1; real(R) = 2 */

/* Usage: nne2diagram.out [DCR] */
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if(argc > 1) {

if(index(argv[1],'D')) debug=1;

if(index(argv[1],'C')) cg_or_real=1;

if(index(argv[1],'R')) cg_or_real=2;

}

yyparse();

return 1;

}

int getmin(int a,int b){

if(b > 0) {

if(a > b) { a = b;}

}

return a;

}

int getmax(int a,int b){

if(b > 0) {

if(a < b) { a = b;}

}

return a;

}
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Type-identifier programs

Lex program

%{

#include "typeidentifier.tab.h"

%}

%option nounput

%option noinput

%%

[a-zA-Z]+ {strcpy(yylval.padainfo.word,yytext);

return concept;}

\n { return '\n';}

\<{ return '<';}

\>{ return '>';}

\-{ return '-';}

%%

Yacc program

%union {

struct node{

char word[1000];

char head[100];

} padainfo;

}
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%{

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

char type[10];

int yylex();

int yyerror();

%}

%token <padainfo> niRTa

%token <padainfo> vqwwi

%token <padainfo> nirUpiwa

%token <padainfo> nirUpaka

%token <padainfo> avacCinna

%token <padainfo> avacCexaka

%token <padainfo> aBAva

%token <padainfo> concept

%type <padainfo> compound

%type <padainfo> Ppada

%type <padainfo> Upada

%type <padainfo> pada

%type <padainfo> example

%%

examples: example

| examples example
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;

example: compound '\n' { printf("%s \n",$1.word); }

;

compound : Ppada '-' Upada {

strcpy(type,"@R");

if(!strcmp($1.head,"niRTa")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwi")) strcpy(type,"@K1");

if(!strcmp($1.head,"nirUpiwa")) strcpy(type,"@K1");

if(!strcmp($1.head,"nirUpaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"avacCinna")) strcpy(type,"@K1");

if(!strcmp($1.head,"avacCexaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"rahiwa")) strcpy(type,"@T6");

if(!strcmp($1.head,"eka")) strcpy(type,"@Tds");

if(!strcmp($1.head,"xvi")) strcpy(type,"@Tds");

if(!strcmp($1.head,"wri")) strcpy(type,"@Tds");

if(!strcmp($1.head,"cawur")) strcpy(type,"@Tds");

if(!strcmp($1.head,"paFca")) strcpy(type,"@Tds");

if(!strcmp($1.head,"Rat")) strcpy(type,"@Tds");

if(!strcmp($1.head,"sapwa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"aRta")) strcpy(type,"@Tds");

if(!strcmp($1.head,"nava")) strcpy(type,"@Tds");

if(!strcmp($1.head,"xaSa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"Sawa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"sahasra")) strcpy(type,"@Tds");

if(!strcmp($1.head,"viXa")) strcpy(type,"@K1");
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if(!strcmp($1.head,"Awmaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"ukwa")) strcpy(type,"@K1");

if(!strcmp($1.head,"janya")) strcpy(type,"@T5");

if(!strcmp($1.head,"anukUla")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXAraka")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAryaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAraNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRyaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRaNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"prakAraka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargika")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayika")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRyaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRaNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwika")) strcpy(type,"@K1");

if(!strcmp($1.head,"sAmAnyIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"aBAvIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"prawiyogiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"anuyogiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXeyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXArawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAryawAka")) strcpy(type,"@K1");
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if(!strcmp($1.head,"kAraNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRaNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"prakArawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRaNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwiwAka")) strcpy(type,"@K1");

if(!strcmp($3.head,"niRTa")) strcpy(type,"@T7");

if(!strcmp($3.head,"vqwwi")) strcpy(type,"@T7");

if(!strcmp($3.head,"nirUpiwa")) strcpy(type,"@T3");

if(!strcmp($3.head,"nirUpaka")) strcpy(type,"@T6");

if(!strcmp($3.head,"avacCinna")) strcpy(type,"@T3");

if(!strcmp($3.head,"avacCexaka")) strcpy(type,"@T6");

if(!strcmp($3.head,"aBAva")) strcpy(type,"@T6");

if(!strcmp($3.head,"Bexa")) strcpy(type,"@T6");

if(!strcmp($3.head,"Binna")) strcpy(type,"@T5");

if(!strcmp($3.head,"rahiwa")) strcpy(type,"@T3");

if(!strcmp($3.head,"sAmAnAXikaraNyam")) strcpy(type,"@T6");

if(!strcmp($3.head,"Awmaka")) strcpy(type,"@Bs6");
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if(!strcmp($3.head,"janya")) strcpy(type,"@T5");

if(!strcmp($3.head,"ukwa")) strcpy(type,"@T7");

if(!strcmp($3.head,"Axi")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"sambanXa")) strcpy(type,"@K4");

if(!strcmp($3.head,"svarUpa")) strcpy(type,"@T6");

if(!strcmp($3.head,"pakRaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"sAXyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"hewuka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prawiyogika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"anuyogika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXeyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXAraka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"aXikaraNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAryaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAraNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRaNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prakAraka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRaNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"vqwwika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prawiyogiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"anuyogiwAka")) strcpy(type,"@Bs6");
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if(!strcmp($3.head,"AXeyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXArawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"aXikaraNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAryawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAraNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRaNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prakArawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRaNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"vqwwiwAka")) strcpy(type,"@Bs6");

sprintf($$.word,"%s-%s%s",$1.word,$3.word,type);

strcpy($$.head,$3.head);

}

;

Ppada : '<' pada {sprintf($$.word,"<%s",$2.word);

strcpy($$.head,$2.head);}

;

Upada : pada '>'{sprintf($$.word,"%s>",$1.word);

strcpy($$.head,$1.head);}

;
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pada : compound { strcpy($$.word,$1.word);

strcpy($$.head,$1.head);}

| concept { strcpy($$.word,$1.word);

strcpy($$.head,$1.word);}

;

%%

#include <stdio.h>

#include <stdlib.h>

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);

return (0);

}

int main(int argc, char *argv[]){

yyparse();

return 1;

}
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