Computational Analysis and Graphical
Representation of Navya-Nyaya
Expressions - Nyayacitradipika

A dissertation submitted to the University of Hyderabad

for the award of the degree of
Doctor of Philosophy
in

Sanskrit Studies

Arjuna S.R.
12HSPHO1

Department of Sanskrit Studies
School of Humanities
University of Hyderabad
Hyderabad
December 2016

Computational Analysis and Graphical
Representation of Navya-Nyaya
Expressions - Nyayacitradipika

A dissertation submitted to the University of Hyderabad
for the award of the degree of

Doctor of Philosophy
in
Sanskrit Studies
by
Arjuna S.R.
12HSPHO1

under the guidance of

Prof. Amba P. Kulkarni

Department of Sanskrit Studies
School of Humanities
University of Hyderabad
Hyderabad
December 2016

Declaration

I, Arjuna S.R., hereby declare that the work embodied in this
dissertation entitled “Computational Analysis and Graphical
Representation of Navya-Nyaya Expressions - Nyayaci-
tradipika” is carried out by me under the supervision of Prof. Amba
P. Kulkarni, Professor, Department of Sanskrit Studies, University of
Hyderabad, Hyderabad and has not been submitted for any degree in
part or in full to this university or any other university. I hereby agree

that my thesis can be deposited in Shodhganga /INFLIBNET.

A report on plagiarism statistics from the University Librarian is en-

closed.

Arjuna S.R.
12HSPHO1

Date:
Place: Hyderabad

Signature of the Supervisor

i

Department of Sanskrit Studies
University of Hyderabad, Hyderabad

Certificate

This is to certify that the dissertation entitled Computational
Analysis and Graphical Representation of Navya-Nyaya Ex-
pressions - Nyayacitradipika submitted by Arjuna S.R. bearing
registration number 12HSPHO1 in partial fulfilment of the require-
ments for the award of Doctor of Philosophy in the School of Hu-
manities is a bonafide work carried out by him under my supervision

and guidance.

This dissertation is free from plagiarism and has not been submitted
previously in part or in full to this or any other University or Institution

for award of any degree or diploma.

Parts of this dissertation have been:
A. published in the following publications:
1. Natural Language Processing - ICON-2014, ISBN:
9789383635528, Chapter: Parsing
2. Sanskrit and Computational Linguistics, 2016, ISBN:
9788193231906, Chapter: I

il

B. presented in the following conferences:

1. Segmentation of Navya-Nyaya Expressions, International

Conference on Natural Language Processing (ICON) - 2014, Goa

University, Goa - 2014

2. Analysis and Graphical Representation of Navya-Nyaya

Expressions, 16" World Sanskrit Conference, Bangkok, Thai-
land - 2015

3. Type-identifier for Navya-Nyaya Expressions, Philosophi-

cal Contributions of Prof. Biswambar Pahi, Jaipur, India - 2016

Further, the student has passed the following courses towards fulfil-

ment of course-work requirement for Ph.D:

Course Code | Course Name Credits | Pass/Fail
SK 816 Introduction to Linguistics 4 Pass
SK 812 Natural Language Processing 4 Pass
SK 826 Research Methodology 4 Pass
SK 827 Indian and Western Logical Systems 4 Pass
Prof. Amba P. Kulkarni Dr. J.S.R.A Prasad

Supervisor

Professor

Department of Sanskrit Studies

School of Humanities

Dean

School of Humanities

University of Hyderabad

v

Department

Head
Associate Professor

of Sanskrit Studies

School of Humanities

Acknowledgements

This dissertation would not have been possible without the guidance
and the help of many individuals who extended their support in com-

pletion of this work.

First and foremost, my utmost gratitude to my supervisor Prof. Amba
P. Kulkarni for her guidance, patience and continuous support through-
out my research work. Without her, this work would not have been pos-
sible. I feel blessed for being able to work with a dedicated, supportive
and caring person like her. She was there for me in all the situations,
whenever I needed her. She is the reason for all my achievements in

academic life. She is the inspiration for me.

I kowtow to His Holiness Sri Vishveshateertha Swamiji of Pejavara

Matha, Udupi for their unconditional love, care and support from my

childhood.

I express my sincere gratitude to Prof. Gérard Huet for his valuable
guidance in my research. He taught me a lot in my academic and

personal life. I am indebted for his care and love.

[am grateful to Prof. V. N. Jha for the encouragement and guidance
in the research. He visited the department to encourage my research

and I am thankful to him for his valuable suggestions.

I express my gratitude to Prof. Shrinivasa Varakhedi for his contin-

uous support in profound discussions on various research problems.

I express my heartfelt thanks to Prof. K. V. Ramakrishna-
macharyulu, Prof. K. S. Prasad, Prof. K. N. Murthy, Prof. K.

Subrahmanyam, Prof. Tirumala Kulakarni for their support and en-

couragements in my research.

I express my sincere gratitude to Dr. J. S. R. Anjaneya Prasad for
his constant support and encouragement in my research. He helped me

a lot with care.

I also convey my regards to my teacher Dr. A. Haridasa Bhatta who

gave me valuable insights on my work.

I am indebted to Dr. Anil Kumar for his help, care and support

during my research. He is like brother to me.

I am grateful to Dr. Pavankumar S, Dr. Monali Das, Dr. Siva P,
Dr. Surendra K, Mr. Sivasenani N,
Ms. Preeti Shukla, Mr. Devanand Shukl, Mr. Krishnamohan K, Dr.
Shailaja N, Dr. Vinaya B, Dr. Vani M, Dr. Sreedevi K, Dr. Anupama
R, Mr. Sanjeev P, Mr. Madhusoodan P, Mr. CG Krishnamurthi, Ms.

Gowri, Ms. Kiranmayee, Ms. Sonia for thier support.

I should thank my most beloved friend Karunakar M for his help and

support in academic and personal work.

['am also thankful to my friends Pavankumar, Monali, Praveen Gatla,
Jatin Sharma, Gaya Hadiya, Jayshree Gajjam, Gauri Sahoo, Sanal,
Raghavan, Ambika Prasad Pani, Rik Ganguly, Santosh Yadav, Imran,
Vijay, Venkat Rao uncle of Social Science Canteen and my beloved

group HCU Kannada Balaga for their love and support.

I am most grateful to my parents, family and my beautiful fiancée

Srividya for their continuous support and encouragement.

I cannot forget the office staff of our department, who provided me

all kind of infrastructural help. I thank everyone from Department of

vi

Sanskrit Studies office.

I would like to thank one and all, who have directly or indirectly been

instrumental in the completion of my research work and dissertation.

vii

Contents

|Acknowledgementsi

h‘able of Conten’d

IList of Figure4

IDissertation related papers presented at Conferences{

|1 Overviewl

.1

Introductionl

.2

Navya—NyéyaI

1.3

Influence of Navya-Nyaya Technical Languagd

.4

Motivation and Goal of researchl

|1.4.1 Parsing an NN Expressiod

.5

The organisation of thesisl

1.6

Contribution of the thesi&i

viil

ii

ii

iii

viii

xi

xiii

10
10
13
14
17
18

Segmentation for NN Expressionsl

b.1

Preparation of Gold datal

D.2

Sanskrit Heritage Reader for N NESI

D.3

Samsadhani for NNEd

D.4

Samsadhani-NN Segmenter with controlled lexiconl

Constituency Parser for NNEj

B.1

Syntax of NN Expressiond

B.2

Some salient features of NNEsI

B.3

Building a constituency Parseli

Type-Identiﬁex{

h.1

Earlier effortsl

W2

Analysis of NNE compoundsi

h.3

Context-free grammarl

h.4

Analysis of the resultl

W5

Conclusiod

Graphical Representatiod

b.1

Earlier effortsj

6.2

What is Conceptual Graph?l

b.3

Conceptual Graphs for NN Expressionl

b.4

Compressed CGEJ

b.5

Grammar of NN Expressiorﬂ

6.6

NN Expressions to Conceptual Graphé

b.6.1 An illustratiod

N ydyacz’tmdipz’kd

X

20
22
23
28
35

38
39
42
44

47
47
48
51
56
56

58
o8
60
62
69
70
71
73

79

|7 Conclusiod

A ppendices

IBibliographyI

87

89

131

List of Figures

Il The NNE represented in Conceptual Graphsl 6
I2.1 FSA showing possible taddhita suffixes in NNEj 23
I2.2 First problem in Heritage segmenteli 25
IZ.S Second problem in Heritage segmenterl 26

D.4

ifcs(in fine compositi or samasa-uttarapada) found id

|3.1 A screen-shot of the interfacd 45
b.2 A screen-shot of the interface after user—selectionl ... 46
|4.1 Constituency parse corresponding to the grammatl .

h.2

Head-info computed according to the grammar - step]J 55

1.3

Head-info computed according to the grammar - step 2] 55

I5.1 The graphs used by traditional scholarsl 59
|5.2 An example of CGI 60
I5.3 General form of CGI 61
|5.4 General form of an N NEj 62
b5 Conceptual Graph for (4)| 64
I5.6 Conceptual Graph with position information for (4)| .. 64

pal

b.7

Conceptual Graph with position information for (6)| o

5.8

Conceptual Graph with position information for (7)| o

5.9

Conceptual Graph for (1)|

b.10

Conceptual graph corresponding to (9)|

b.11

Conceptual graph corresponding to (1())|

b.12

An instance of SCL grapﬂ

b.13

SCL graph corresponding to (10)|

b.14

Constituency parse corresponding to the grammatl S

b.15

Compact parse -]J

b.16

Compact parse with position informatiod

b.17

Compact parsd

b.18

concept node acquires the ‘head’ position from chﬂd .

b.19

relation term inherits the ‘head’ positionl

5.20

relation node inherits the position of 24 relatal C

5.21

CG generated by modified grammaxl

6.1

Homepage of Nyayacitradipika with two modesl C

6.2

Segmented output from SCL segmenterl

6.3

user interface to select anuyogz’ﬂ

6.4

Completely disambiguated NNEj

6.5

Conceptual Graph (CG) of the selected NNEI

6.6

Compressed CG of the selected NNEj

6.7

Identified compound types of the selected NNEj C

xii

65
66
68
68
69
69
70
74
74
75
75

76
76
78

80
81
82
83
84
85
86

Dissertation related papers presented at Conferences

Arjuna S.R. and Amba Kulkarni, “Segmentation of Navya-Nyaya Ex-
pressions”. International Conference on Natural Language Processing.

December 18-21%" 2014. Goa University, Goa.

Arjuna S.R. and Amba Kulkarni, “Analysis and Graphical Represen-
tation of Navya-Nyaya Expressions”. World Sanskrit Conference. June

28t July 274 2015. Bangkok, Thailand.
Amba Kulkarni and Arjuna S.R., “Type-identifier for Navya-Nyaya

Expressions”. Philosophical contributions of Prof. Biswambar Pahi.

March 12%-14%" 2016. University of Rajasthan, Jaipur, Rajasthan.

xiil

Synopsis

Nyaya (Indian Logic) is one of the fundamental branches of philos-
ophy in Sanskrit. Sage Gautama is known as the founder of Nyaya
philosophy. Taking into consideration the developments in Nyaya, one
can classify the Nyaya literature into two broad divisions.

1. Pracima-Nyaya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyaya (Modern Logic/Neo-Logic, 1200 AD - till date)
According to the tradition the period of Pracina-Nyaya ranges from
Sage Gautama to Gangesa and post Gangesa period as Navya-Nyaya.
In ancient times, debate was one of the important means to express
the thoughts or ideas of one’s own philosophy to the scholars and the
common people as well. Indian intellectual tradition considers debate
seriously, and it came up with specific rules regarding the conduct of a
debate. In Nyayasutra, 5.2.1 - 24, Sage Gautama himself defines the ni-
grahasthanas. But around 9th century, Sriharsha, an Advaita vedantin
in his work Khandanakhandakhadya came up with many fallacies in
Nyaya philosophy. After this, Udayana felt the need of a new technical
language, where there is no ambiguity in expressing the issues. In the
works of Udayana, Atmatattvaviveka and Nyayakusumaiijali, we find

the earlier traces and hints towards the necessity of a technical language

and efforts towards its creation. A few decades later, Gangesa with the
influence of Udayana, came up with an idea to bring unambiguity in the
debate process. Thus he completely concentrated on pramana part, not
on the prameya as Nyaya tradition did. He developed a new technical
language in his monumental work. This gave rise to a new offshoot of
Nyaya, Navya-Nyaya (NN).

Development of new language for the debate made Gangesa stood apart
from all other philosophers. He emphasized on the development of
many technical terms that brought unambiguity in the process of de-
bate. This technical language influenced all other branches of philos-
ophy in a big way. Of course, Navya-Nyaya also contributed towards
theoretical insights into the Nyaya philosophy.

We notice the seeds of Navya-Nyaya in the works of Nyayakusumanjali
of Udayana. But later Gangesa (12th century) provided a strong foot-
ing through his Tattvacintamani and thus renowned as the founder of
NN. NN is famous for its sophisticated and unique language to express
the thoughts in an unambiguous way. This language of NN deals with
verbal cognition, logic and epistemology. This language influenced al-
most every Indian philosophy. In recent times, Computer Scientists({)

also noticed the importance of this formal language.

Goal of research

There are two types of difficulties in understanding this language.
e Linear structure with long compounds
» Concepts associated with the conceptual terms
There are noteworthy efforts in understanding of the complexity of

conceptual terms. Shukla(40) with his lucid explanations eases the

2

complexity of the NN technical terms. Ingalls([13) compared the NN
concepts with western logic. Scholars like Matilal(27) and many others
contributed to ease this difficulty.
A few scholars concentrated on the understanding of the syntax of
the NN technical language. Kulkarni(20) analysed this language with
computational perspective using the modified version of Conceptual
Graph. Ganeri(9) provides a formal description of various primitive
terms of NN. Scholars like Varakhedi(45) and a few others put their
effort in this field.
NN Expressions are used to describe the cognitive structure
(jnanakarah) as well as the physical world around us (sambaddha-
padarthah). An NN Expression is a compound. A compound, in
Sanskrit, is written as a single word without any gap or hyphen in
between the components, with components joined together following
euphonic changes. This makes the processing of Sanskrit compounds
more challenging. Kumar et al.(26) describe the steps involved in pro-
cessing Sanskrit compounds and also discuss the associated computa-
tional complexity. The steps are -
1. Splitting a compound into components.
This involves undoing euphonic transformations.
2. Analysing its constituent structure.
At this stage a compound is analysed showing how the compo-
nents are grouped together.
3. Identifying relations between the components.
Now the relation between the components thus grouped is made
explicit.

4. Providing a paraphrase of the compound.

Finally a paraphrase of the compound is generated.
We illustrate these steps with two examples: an English one followed
by an NN Expression.
Example 1: Consider the long compound ‘lake water pollution reduc-
tion log.
We skip step 1, since the components here are already split.

1. Constituency analysis for this compound is
((((lake-water)-pollution)-reduction)-log)

2. Relations between the components are now marked.
((((lake-water) T7-pollution) T6-reduction)T7-log) T6
Here T stands for Tatpurusa (an endo-centric) compound and
the numbers 6 and 7 indicate the genitive and the locative case
markers.

3. The paraphrase of this compound is generated.

Log of the reduction in pollution of water in lake.
Example 2: Consider the following NN Expression which defines earth
as a substance with smell as its characteristic property.
gandhatvavacchinnagandhanisthadheyatanirupitadhikaranatavati.

1. After splitting the compound into its components, we get
gandhatva-avacchinna-gandha-nistha-adheyata-nirupita-
adhikaranata’ vati.

Here the components are separated by hyphen and the deriva-
tional suffix ‘-vati’ is separated by a caret.

2. The constituency parse of this compound is
((((gandhatva-avacchinna)-((gandha-nistha)-adheyata))-
nirupita)-adhikaranata)”vatt

3. After identifying the relations between the components, we get

4

((((gandhatva-avacchinna)T3-((gandha-nistha)T7-
adheyata)K)K-nirupita) T3-adhikaranata) K" vat1

where K, T3, and T7 stand for Karmadharaya, and Tatpu-
rusa compounds with instrumental and locative case suffixes.
These are all endo-centric compounds, with a requirement
of nominative, instrumental and locative case suffixes during
paraphrasing.

4. Finally the paraphrase of this compound is

Sanskrit: gandhatvena avacchinna, gandhe nistha ya adheyata,

tannirupita adhikaranata’vatt

Gloss: by_smellness delimited in_smell residing which

substratum-ness determined by _that superstatum-ness possess-

ing

English: An object which has superstatum-ness which is deter-

mined by the substratum-ness that is residing in the smell and is

delimited by the smell-ness.
In the traditional oral method of teaching, the teacher used to provide
the paraphrase of such long compounds starting from the innermost
compound, building in a bottom-up approach, joining one component
at a time, explaining the type of the compound. This would then
create a whole knowledge structure in the mind of a student. With the
advancement of new technology, now it is possible to represent the same
knowledge pictorially, which helps a modern student who relies more
on visual aids than memory to understand such complex compounds

easily.

The NNE can be represented pictorially after the constituency parse.
For instance, This NNE ((((gandhatva-avacchinna)-((gandha-nistha)-
adheyata))-nirupita)-adhikaranata)”vat-prthivi can be represented in

Conceptual Graphs as shown in Figure - EI

gandhatva adheyata adhikaranata
(smellness)(1) (superstratum-ness)(5) (substratum-ness)(7)

avacchinna nistha nirGpita

2 (delimited by)(2) (residing in) (4) (determining) (6)

gandha vat
(possessing)(8)

(smell)(3)
7 prthivi 7

(earth)(9)

y

Figure 1: The NNE represented in Conceptual Graphs

‘A picture is worth 1000 words’ so goes an English idiom. The best
way to ease this complexity is by representing the linear structure in a
diagrammatical form. We see use of diagrams to express NNEs since
long, as early as in 20" century. Vamacaranabhattacarya(33) used di-
agrams in his teachings. Later in the 60s, Wada(46) mentions that
Kitagawa started using diagrams to explain the NN theories. In 1987,
V.N.Jha(ll6) came up with a better solution. He started representing
the NNE in a unique diagrammatic form. This method simplified and
helped the Nyaya as well as other school students to understand the
structure of NN terminology. Later in 1994, Amba Kulkarni put her
efforts to build a bridge between NN and Western logic in her M.Tech
thesis(20). In this connection, she opted Conceptual Graph, a diagram-

6

matic representation scheme to show Navya-Nyaya’s linear structure
in a better way. Next Shrinivasa Varakhedi in his PhD thesis dis-
cussed about Knowledge Representation and used the diagrammatical
representation method to show Navya-Nyaya structure(45). Toshihiro
Wada(46) also used diagrams extensively in his works. Tirumala Ku-
lakarni and Jaideep Joshi also used diagrams(23) to explain the complex
NN terms in an easier way.

But all these efforts are manual. Our goal of research is to build a soft-
ware which renders an NNE diagrammatically, probably automatically

and if needed with some human inputs.

Chapter 1

Overview

1.1 Introduction

Nyaya (Indian Logic) is one of the fundamental branches of philosophy
in Sanskrit. Kautilya in Arthasastra emphasizes -
“Pradipah sarvavidyanam pradipah sarvakarmanam)|
Asrayah sarvadharmanam Sasvadanvikshiki mata’.
Sage Gautama is known as the founder of Nyaya philosophy. Tak-
ing into consideration the developments in Nyaya, one can classify the
Nyaya literature into two broad divisions.

1. Pracia-Nyaya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyaya (Modern Logic/Neo-Logic, 1200 AD - till date)
According to the tradition, the period of Pracina-Nyaya ranges from
Sage Gautama to Gangesa and post Gangesa period as Navya-
Nyaya. But a few historiansl consider three divisions - Pracina-Nyaya,

Madhyama-Nyaya and Navya-Nyaya.

LA History of Indian Logic by Satish Chandra Vidyabhushana.

8

In ancient times, debate was one of the important means to express the
thoughts or ideas of one’s own philosophy to the scholars and the com-
mon people as well. Debate or Dialogue used to take place to remove
the confusions in rituals, to highlight the importance of the philosophies
and many other purposes. Traditional scholars from different philo-
sophical backgrounds used to meet often at one place and demonstrate
their views. Some opposition used to raise on it and then the debate
will start between them. Indian intellectual tradition considers debate
seriously and it came up with specific rules regarding the conduct of a
debate. In Nyayasutra, 5.2.1 - 24, Sage Gautama himself defines the ni-
grahasthanas. But around 9 century, Srtharsha, an Advaita vedantin
in his work Khandanakhandakhadya came up with many fallacies in
Nyaya philosophy. After this, Udayana felt the need of a new technical
language, where there is no ambiguity in expressing the issues. In the
works of Udayana, Atmatattvaviveka and Nyayakusumanjali, we find
the earlier traces and hints towards the necessity of a technical language
and efforts towards its creation. A few decades later, Gangesa with the
influence of Udayana, came up with an idea to bring unambiguity in the
debate process. Thus he completely concentrated on pramana part, not
on the prameya as Nyaya tradition did. He developed a new technical
language in his monumental work. This gave rise to a new offshoot of
Nyaya, Navya-Nyaya (NN).

The important division between Pracina and Navya-Nyaya philosophy
is based on fundamental issues. Similar to other philosophies, Pracina-
Naiyayikas concentrate on the salvation and they discuss the topics
related to it. But Navya-Naiyayikas did not stick to this and concen-

trated on pramanas and the development of a new technical language.

Development of new language for the debate made Gangesa stand apart
from all other philosophers. He emphasized on the development of
many technical terms that brought unambiguity in the process of de-
bate. This technical language influenced all other branches of philos-
ophy in a big way. Of course, Navya-Nyaya also contributed towards

theoretical insights into the Nyaya philosophy.

1.2 Navya-Nyaya

We notice the seeds of Navya-Nyaya in the works of Nyayakusumanjali
of Udayana. But later Gangeéa (12" century) provided a strong foot-
ing through his Tattvacintamani and thus is renowned as the founder of
NN. NN is famous for its sophisticated and unique language to express
the thoughts in an unambiguous way. This language deals with verbal
cognition, logic and epistemology. This Navya-Nyaya Technical Lan-
guage(NNTL) was so much powerful in its unambiguous expressions
that it became the lingua-franca of almost all scholarly works of vari-
ous branches of knowledge such as Mimamsa ‘exegesis’ (B8), Vyakarana
‘grammar’ ([7), Sahitya ‘literature’ ([14), Jaina philosophy(43), and even
Law([19). In recent times, the importance of this formal language was

also noticed by the computer scientists(4).

1.3 Influence of Navya-Nyaya Technical

Language

The importance and usefulness of the technical language of NN were
noticed by everybody and within no time, it spread across all branches

of knowledge systems.The use of NNTL in Vyakarana made it stand

10

apart from the old texts on Vyakarana and thus resulted in a new
discipline Navya- Vyakarana.
We find two usages of NNTL - to disambiguate a text and to define the
technical terms. Unambiguity being the main criterion in the knowledge
systems, it became one of the important branches of essential studies
for any Sanskrit scholar. Below we give a few glimpses of the pervasion
of NNTL in various branches of knowledge systems, with an example
for each.
o Knowledge Branch: Mimamsa
Text: Mimamsakaustubha of Khanndadeva.
Context: In the Mimamsa sutra 2.1.4 on the discussion on how

% is related to arasi,

Example: 9 TREAYEATEA-SARANRGN THE: Hodiuid

PRIETsTATEE A foemEEl 9l @ TEIsyEiarg
FOlIEE [AREaTEEd, SIYEREEO: SIHEey |
QU IEEEARETOE RN IDEI R T i G o — (pp-9, Mimamsak-
oustubha, Choukambha Sanskrit Series, Benaras, 1932.)

¢ Knowledge Branch: Vyakarana

Text: Vaiyakaranabhtishanasara of Kaundabhatta.

Context: While defining the meaning of the &g,

Example: TadHETE Sgae-aHasdaE=sahe dd JEar-ae
I ded feremel: | (pp-29, Vaiyakaranabhiishanasara, The
Narayana Press, Calcutta, 1984.)
¢ Knowledge Branch: Sahitya
Text: Rasagangadhara by Panditaraja Jagannatha.
Context: Explaining the concept of Upama,
Example: 7 A5 Al AHTHRIGHI R Tl AT Teheg:

11

o o ﬂr\ HWJWW S TN = 9
AR g | (pp-12, Rasagangadhara-Part-1I, Sampur-
nanand Sanskrit University, Varanasi, 1981.)
Knowledge Branch: Jaina

Text: Nyayavataravivrti of Siddharshi.

Context: While discussing what kind of vikalpa is used here,

Example: \Hﬁwuﬁf&qw|dg€|qfél-?|c¢tq®&10|qq°ldqc¢|qld<q|cL
AAfReTd dearAaEld A qd Wi FEGASANd a1 gfd 9d,

ale fowe: @ouufe: wH:, FadeRRIar SRR TETE N |
... (pp-140, Nyayavataravivrti, Jaina Sahitya Vikasa Mandal,
1971)
Knowledge Branch: VaiSesika

Text: Sasadhara's Nyayasiddhantadipa's commentary by

Sivaditya.

Context: In the commentary, while discussing about what ex-
actly ReMRd is,

Example: IS RTSNIcHRE qqa: |
S SR IPGCIEEUR I CazsZC MG 1152 2 B o P R A iR A E IS E s AL 1 s G Gl E3
| Edl: EINRET, ¥d WE: | (pp-11, Nyayasiddhantadipa,

Santiniketan Viswabharathi Library, 1903)
Knowledge Branch: Nyaya (Law)

Text: Dayabhaga of Jimaitavahana. Context: While dis-
cussing what will be designated by the word 7T in a particular

context,

Example: g SIcNTHAIIESH N T=ICAUeal: &Hard, 9 d

NIRRT T TTNETd, | (pp-16, Dayabhaga, Sid-
heswara Press, Kolkata, 1893)

12

* Knowledge Branch: Uttaramimamsa
It is well known that Acarya Sankara, Ramanuja, Madhva
and other acaryas, who wrote the commentary on Brahmasfitra

also used this NNTL in their works.

1.4 Motivation and Goal of research

There are two difficulties in understanding NNTL viz. its linear struc-
ture with long compounds and the concepts associated with the concep-
tual terms. There are noteworthy efforts to understand the conceptual
difficulties by many scholars. Shukla(41) eases the complexity of NN
technical terms by explaining them in a simple and lucid way. Jha(|L6)
simplifies the big chunk of a Navya Nyaya Expression (NNE) using the
diagrams and explaining the concepts in a simple way. Bhatta(3), with
his uncomplicated way of explanation and using the diagram elabo-
rates the complex invariable concomitance topic. Ingalls([13), Shaw(39),
Mohanty(B1), Matilal(28) tried to compare the NN concepts with the
concepts in the Western logic and provide logical representations for
various important concepts such as Vyapti etc.

The other efforts concentrated on the understanding of the syntax of
NNEs. Kulkarni(20), trying to build a bridge between Navya-Nyaya
and western logic, analyses the NN in a computational perspective using
the modified version of Conceptual Graph. Varakhedi(45) showed the
relevance of NN for the Knowledge Representation. Ganeri(9) provides
the formal description of various primitive terms of NN. Patil(B3) uses
the graphical rendering of expressions in his commentary of popular NN
text Tarkasamgraha. Kulakarni and Joshi(23) expounds the technical

language of NN in a remarkable way using pictures and graphs. Almost

13

every scholar used graphical representation in their texts to explain the
NN concepts.

We chose to concentrate only on the difficulty in the analysis due to
the linear structure of NNE. A single NNE runs into pages, which
is very hard for a human to comprehenda. In spite of a continuous
stream of characters involving arbitrarily long compounds, the cognitive
structure being described by such an expression helps a human mind

to understand them.

1.4.1 Parsing an NN Expression

NN Expressions are used to describe the cognitive structure
(jhanakarah) as well as the physical world around us (sambaddha-
padarthah). An NN Expression is a compound. A compound, in
Sanskrit, is written as a single word without any gap or hyphen in
between the components, with components joined together following
euphonic changes. This makes the processing of Sanskrit compounds
more challenging. Kumar et al. (26) describe the steps involved in
processing Sanskrit compounds and also discuss the associated compu-
tational complexity. The steps are
1. Splitting a compound into components.
This involves undoing euphonic transformations.
2. Analysing its constituent structure.
At this stage, a compound is analysed showing how the compo-
nents are grouped together.

3. Identifying relations between the components.

2You may refer to Miller’s article(29) for more information regarding the human
capacity of understanding.

14

Now the relation between the components thus grouped is made
explicit.
4. Providing a paraphrase of the compound.
Finally, a paraphrase of the compound is generated.
We illustrate these steps with two examples: an English one followed
by an NN Expression.
Example 1: Consider the long compound ‘lake water pollution re-
duction log’. We skip step 1 since the components here are already
split.
1. Constituency analysis for this compound is
((((lake-water)-pollution)-reduction)-log)
2. Relations between the components are now marked.
((((lake-water) T7-pollution) T6-reduction) T7-log) T6
Here T stands for Tatpurusa (an endo-centric) compound and
the numbers 6 and 7 indicate the genitive and the locative case
markers.
3. The paraphrase of this compound is generated.
Log of the reduction in pollution of water in the lake.
Example 2: Consider the following NN Expression which defines earth
as a substance with the smell as its characteristic property.
gandhatvavacchinnagandhanisthadheyatanirupitadhikaranatavats. (1)
1. After splitting the compound into its components, we get
gandhatva-avacchinna-gandha-nistha-adheyata-nirupita-
adhikaranata’ vati.
Here the components are separated by a hyphen and the
derivational suffix ‘-vati’ is separated by a caret.

2. The constituency parse of this compound is

15

((((gandhatva-avacchinna)-((gandha-nistha)-adheyata))-
nirupita)-adhikaranata)”vati
3. After identifying the relations between the components, we get
((((gandhatva-avacchinna)T3-((gandha-nistha)T7-
adheyata)K)K-nirupita)T3-adhikaranata) K" vat1
where K, T'3 and T'7 stand for karmadharaya and tatpurusa com-
pounds with instrumental and locative case suffixes. These are
all endo-centric compounds, with a requirement of nominative,
instrumental and locative case suffixes during paraphrasing.
4. Finally, the paraphrase of this compound is
Sanskrit: gandhatvena avacchinna, gandhe nistha ya adheyata,
tannirupita adhikaranatavati
Gloss: by_smellness delimited in_smell residing which
substratum-ness determined by that superstratum-ness pos-
sessing
English: An object which has superstratum-ness which is deter-
mined by the substratum-ness that is residing in the smell and is
delimited by the smell-ness.
In the traditional oral method of teaching, the teacher used to provide
the paraphrase of such long compounds starting from the innermost
compound, building in a bottom-up approach, joining one component
at a time, explaining the type of the compound. This would then
create a whole knowledge structure in the mind of a student. With the
advancement of new technology, now it is possible to represent the same
knowledge pictorially, which helps a modern student who relies more
on visual aids than memory to understand such complex compounds

easily.

16

‘A picture is worth 1000 words’ so goes an English idiom. The best
way to ease this complexity is by representing the linear structure in
a diagrammatical form. We see the use of diagrams to express NNEs
since long, as early as in 20" century. Vamacaranabhttacarya(33) used
diagrams in his teachings. Later in the 60s, Wada(47) mentions that
Kitagawa started using diagrams to explain the NN theories. In 1987,
V.N.Jha(ll6) came up with a better solution. He started representing
the NNE in a unique diagrammatic form. This method simplified and
helped the Nyaya as well as other school students to understand the
structure of NN terminology. Later in 1994, Amba Kulkarni put her
efforts to build a bridge between NN and Western logic in her M.Tech
thesis(20). In this connection, she opted Conceptual Graph, a diagram-
matic representation scheme to show Navya-Nyaya’s linear structure in
a better way. Next Shrinivasa Varakhedi in his PhD thesis discussed
Knowledge Representation and used the diagrammatical representa-
tion method to show Navya-Nyaya structure(45). Toshihiro Wada(47)
also used diagrams extensively in his works. Tirumala Kulakarni and
Jaideep Joshi also used diagrams(23) to explain the complex NN terms
in an easier way.

But all these efforts are manual. Our goal of the research is to
build a software which renders an NNE diagrammatically, probably

automatically and if needed with some human inputs.

1.5 The organisation of thesis

In Chapter 1, we see the introduction of NN and the NNTL and the

usage of NNTL in other philosophies. We state the goal of this research

17

as well.

In Chapter 2, we introduce the first step, the segmentation of the NN
Expressions. We discussed all the earlier efforts and our present effort
in this part.

In Chapter 3, we introduce the Constituency Parsing of the NN Ex-
pressions. We elaborate the Context-free grammar written in a parser
generator called ‘Yacc’ and a lexical analyser ‘Lex’. How the parsing
works, how it is developed and what are the salient features of NNE
which helped us making this tool more automatic are elucidated in this
chapter.

In Chapter 4, we introduce the Type-identifier of the NN Expressions.
We analysed the compounds of NNE which helped out in improving
this tool. We discuss the development of this tool in detail.

In Chapter 5, we present the history of graphical representation used
in NN. Then we introduce the usage of the Conceptual Graphs for NN
Expressions. We explain the Conceptual Graphs renderer for an NNE.
In Chapter 6, we demonstrate all the modules packaged together in the
form of a software - Nyayacitradipika with an example. We have put
the screen-shots of each step explaining the flow.

In Chapter 7, we conclude our research work and mention the future

work in this path.

1.6 Contribution of the thesis

The contribution of the thesis is the development of a computational
tool to ease the difficulty in understanding the NN Expressions. This
work has produced a semi-automatic tool to analyse the NNEs. This

tool can segment an NNE according to Nyaya domain, then parse it to

18

understand the proper semantic structure of it and then render it in a
graphical form. It also identifies the type of the compound in the NNE.
This work will help the students and teachers of NN to study NN in a

better way.

19

Chapter 2

Segmentation for NN

Expressions

The first step in understanding an NNE is to identify the components
in a compound. This process of identifying the components of a com-
pound or continuous language string is called Segmentation. Word
segmentation is important for languages like Sanskrit which is so much
influenced by the oral tradition that the word boundaries undergo eu-
phonic changes resulting into a continuous string of phonemes. The rich
productive morphology resulting into the formation of long compounds
aggravate the problem. There are significant efforts in this area in the
past. Huet(10), Huet and Goyal(l1), Hyman({12), Mittal(30), Kumar
et al.(26), Natarajan and Charniak(32) have contributed efficaciously
to this field.

Hyman([12) describes a Finite State Transducer (FST) for the Paninian
sandhi rules. Huet(lL0) has discussed the segmentation in Sanskrit in

detail and has built an efficient Finite State Automata (FSA) based

20

segmenter. Mittal(B0) describes two approaches; one using FST and
the other one based on Optimality Theory, by defining the posterior
probability function to choose among the valid splits. Kumar et al.(26)
used different posterior probability function and obtained better results.
Natarajan and Charniak(B2) proposed sandhi splitting based on the
Dirichlet process.

The NN school of Indian tradition sees the culmination of productive
compound formation in the form of compounds running into pages.
The components of such compounds are typically formed with more
than one taddhita (secondary derivational) suffixes. Such compounds
also use the technical terms of NN.

Here is an example of linguistic expression in Navya-Nyaya (NNE)

involving a compound with nine components:

samavayasambandha-avacchinna-gandhatva-avacchinna-gandha-

nistha-adheyata-nirupita-adhikaranatavati.

AT - eI - ST o ol-T e - (T8 - ST - e Y- TR uTaTa el

For the sake of readability we show the components split by ‘-’, but
in the printed texts this is written as a single word with underlying

phonological changes as

samavayasambandhavacchinnagandhatvavacchinnagandhanisthadheyata

nirupitadhikaranatavati.

LSt POt B B 1T 0] B 1 | G| B2 = L B3 15 P | S LN R BV RIE R

21

All the efforts related to segmentation described earlier had focused on
general Sanskrit texts. But for much more complex and domain-specific
inputs like NNE, which is known for long compounds, use of technical
vocabulary and productive use of secondary derivational suffixes (tad-
dhita) a specially trained segmenter is needed.

We report below on our efforts in building a segmenter for NNE, in
two stages. First, we report our initial efforts using Heritage en-
gine, followed by building a special morphological analyser and its
use for segmentation in Sanskrit Computational Linguistics Platform

(SCL/€&Ta of the University of Hyderabad.

2.1 Preparation of GGold data

The important part of the process is to collect the data and anal-
yse it manually. As a first step, we collected NNEs manually
from Aloka(44) commentary on Tarkasarigraha and Pancalaksanisar-
vasvam(36). Total 49 expressions were collected from Aloka com-
mentary and 352 expressions from Pancalaksanisarvasvam of Math-
uranatha. We selected these two only because the first one is a
commentary on common and famous text in Navya-Nyaya philos-
ophy. This commentary is small and full of NNEs, which is use-
ful for the understanding the structure of NNEs. The latter one is
a bit bigger and it deals with, five definition of invariable concomi-
tance(Paficalaksani), is also most discussed in Navya-Nyaya philos-
ophy. The 49 NNEs obtained from the Aloka commentary were used
for the development purpose and we set aside the 352 NNEs for test-
ing purpose. All the collected NNEs were further analysed for their

22

components. These two are our gold-data for testing these tools.
Gold data is a well-annotated dataset which is reviewed manually
by experts related to the particular area which the dataset belongs to.
Once the dataset is considered as a gold dataset, any one can use that
data which is clean and authentic. These NNEs from gold-data were
manually segmented for testing our segmenter.

We extracted the possible combination of secondary derivational suf-
tixes that are found in the selected texts. Figure El] shows these pos-
sible combinations, in the form of Finite State Automaton. The num-
bered nodes indicate the possible final states and the edge labels in-

dicate the taddhita suffixes that can follow a pratipadikam.

Figure 2.1: FSA showing possible taddhita suffixes in NNE

2.2 Sanskrit Heritage Reader for NNEs

Arjuna and Huet(l) summarise the difficulties in handling NNEs as
follows.
1. Long compounds,

2. Technical vocabulary,

23

3. Productive use of taddhita suffixes and

4. Semi-formal compound structure.
After understanding the difficulties in segmenting an NNE, the
Heritage segmenter was enhanced. The salient features of the

enhancement are -

1. New data-banks were added for the inflected forms of the tad-
dhita suffixes viz. -tal (Fem), -tva (Neu) and -matup (in all three
genders),

2. Technical vocabulary of Navya-Nyaya was acquired in the lex-
icon,

3. Segmenter transitions were added to accommodate taddhita
productivity,

4. Word mode for single pada was used rather than sentence in
order to curb over-generation and

5. Lean interface described in Huet and Goyal(11) was used in or-
der to share the huge solution space.

The recall of the segmenter after this enhancement was 91%.

Problems in Heritage segmenter

There are three problems with this segmenter for a Naiyayika. The
tirst problem is with the number of solutions. For a typical NNE, this
segmenter results with thousands and sometimes even millions of
solutions. We can see the problem in Figure—@. Typically the top-
most row gives the most probable choice and thus for a compound
with n components, n choices by the user results in the proper split

of the compound. Thus even if there are thousands of solutions, the

24

Sentence: THARRI-HA CBareedd eo s = A BIEdIAS e nRuTdae

+Undo

Sanskrit Segmenter Summary

Click on - to select segment, click on X to rule out segment

Click on segment to get its lemma

(2700 Solutions)

samavayasambandhavacchinnagandhatvavacchinnagandhanisth @ dheyat & nirtipitadhikaranatavati

samavaya sambandha

chinna gandhatva

2.4 4 X a4 /X
sama vaya avacchinna andhatva
2 SIS 4 2.4 X X
avat chit nak avacchinna
2 QNS S 4 4.4
avat
X
Fowered by
OCAML &

© Gérard Huet 1994-2015

chinna gandha

chit nak andha

nistha dheyata nirupita

2.4 /X v
nistha a
4.4 .4

adheyata

/X

a

/X

/X
adhikaranatavati
X

adhikaranata
/X
adhikarana m
2.4 /X
adia [ERRERVA
2.4 .4
adhi karanata
/X /X
karana tavati
SX /X
ranata
/X
Tana n
.4 .4
avatl
/X

-

e
TLA—

Figure 2.2: First problem in Heritage segmenter

user has to look for only a handful of choices. Hence this problem is

not that serious.

The second problem with this segmenter is with the granularity. The

Sanskrit Heritage segmenter is enhanced with the technical vocabu-

lary of Navya-Nyaya. But still, it splits many technical words into

components. For example, nirupita, avacchinna, samanadhikarana etc.

are split as ni-rupita, ava-chinna and samana-adhi-karana respectively.

We can see an instance in below Figure-@.

In order to understand the NNEs that use their own specialised

25

Sanskrit Segmenter Summary

Click on - to select segment, click on X to rule out segment

Click on segment to get its lemma

Sentence: THMIEHIUF

+/Undo /Filtered Solutions /All 11 Solutions /UoH Nyaya Analysis

samanadhikaranam
samana
.4

sama

e 4 4.4
sama adhika
2.4 4.4
ana
X
an adhi
e 9% 4
Powered by Top | Index | Stemmer | Grammar | Sandhi | Reader | Help | Portal i
OCAML. & ol I © IGérard Hﬂel 19942015 R Crnwia—

Figure 2.3: Second problem in Heritage segmenter

technical vocabulary with well-defined meanings, to get a broader
picture of an NNE, a Naiyayika(Indian Logician) prefers to hide the
derivation of these technical terms and would like to see these words

as single units without any splits.

Thus while admitting the fact that the term samanadhikarana is
compositionally equal to samana-adhi-karana or vyadhikarana being
compositionally equal to vi-adhi-karana, these being technical terms,
a Naiyayika would like to look at them as a packaged entry with all

the analysis hidden. Treating such technical words as a single unit

26

would also result in lesser choices for user selection.

Finally, while the user interface has its own advantages, one would
like to reduce the user interaction as far as possible, pushing the cor-
rect solution to the top or preferably the first position for further au-
tomatic processing of such compounds.
We started working on solving these three major problems to get bet-
ter output so as to ease the process of connection with NN-Parser.!
In order to improve the current Sanskrit Heritage Reader to handle
domain specific NNEs, we enhanced the tool, as described below.
¢ Added some technical terms of Navya-Nyaya to the lex-
icon.
A few technical terms were not recognised by Reader before,
viz. varaka, anumapaka etc. So we lexicalised such words.
¢ Displaying words with their prefix as a single word.
One of the main problems with this tool was, it was splitting
the prefix and words. For instance, nirupita was split as ni and
rupita which is not desired by a user. Now this problem has
been solved. It shows nirupita as a single entry now. When
we click on that word for Morph analysis, it displays ni-rupita
pointing out that “ni' is a prefix of word rupita separated with
“hyphen'(-).
e Segments inchoative compound(cvi).

In the previous version of Sanskrit Heritage Reader, inchoative

'T acknowledge here the Raman-Charpak Scholarship awarded by the CEFIPRA
for the duration March’15-June’l5 that enabled me to work closely with Prof.
Gérard Huet at Inria, Paris.

27

compound (cvi compound) were not segmented. For instance,
adhikaranibhutabhavah was not split as adhikaranibhuta-abhavah.
Now we cleared that incompleteness and enhanced the system
to split this also.
Programs were modified further to get better result resolving minor
bugs as well. The recall of the system went up to 97% with these

changes.

2.3 Samsadhani for NNEs

Arjuna and Kulkarni(2) points out these three major problems in
Sanskrit Heritage Reader in segmenting the NNEs and while the
enhancement of Heritage Reader was on, we also started exploring
the improvement of the SCL segmenter simultaneously. As a first
step, we used the same domain specific corpus that was collected
by Arjuna and Huet(l) and enhanced the morphological analyser
of SCL to handle the taddhita suffixes reported in Figure El] The
49 NNEs obtained from the Aloka commentary were used for the
development purpose and we set aside the 352 NNEs for testing
purpose. All the collected NNEs were further analysed for their
components. The statistics showed that there are a few nominal
stems, which are not typical of NN, but occur frequently as a
component in the NNEs. These stems are artha, atmaka, purvaka,
vidha, kara etc. which occur as a final component of a compound (in
fine compositi or samasa-uttarapada). Figure @ shows the sequence
of taddhita suffixes after which these stems occur. We extended
our morphological analyser to handle the derivational morphology

-- both the secondary derivations as well as frequent compounds

28

artha/kara/salin/purvaka/vidha/atmaka

matup

tara/tama

Figure 2.4: ifcs(in fine compositi or samasa-uttarapada) found in NNEs

shown in Figures Ell and @ respectively. We also extended our

lexicon with the technical terms in Navya-Nyaya.

The treatment of some taddhita suffixes such as “ka' and the treat-
ment of krt suffixes (primary derivatives) in compound formation
need special mention. The taddhita suffix “ka' results in a bahuvrihi
(exo-centric) compound. Such compounds, since having their head
external to the compound, they are more like adjectives and thus can
decline in all the three genders. For example, if “the one which has
the smoke as the cause' refers to a masculine referent, it will have the
form dhumahetuka, and if the referent is a feminine, it will have the
form dhumahetuka. But such words when occuring as a component
of a compound as iics (in initio compositi or samasa-purvapada), they
will always undergo an operation of punr'lvadbhe"waE resulting into

a word in the masculine gender. Thus we get dhumahetuka as an iic

2The condition for pumivadbhave is given in Paninian sutra 6.3.42. It says -
In Karmadharaya compound and in those cases where the second component of a
compound ends in a jatiya or desiya suffix, the word in the feminine gender will
assume the bhasitapumska ‘expressed as a masculine’ form.

29

form, whatever be the object it refers to.

Similarly, the adjectives formed by the non-finite suffixes (krt suf-
tixes) such as noul (in the sense of an agent), or kta (in the sense of an
object) also take the base forml when they occur in the compounds
as iics. For example, a compound “a lady cook' will be pacakastriand

not pacikastri.

The Paninian sutra that governs the formation of such compounds
is pumvatkarmadharayajatiyadesiyesu 6.3.42. We have enhanced our

morphological analyser to take into account this phenomenon.

We were able to split all 49 examples from the development data with
this enhancement. The possible splits in each case were in thousands
and in 3 cases even in tens of thousands. This was mainly because,
though the technical terms were available in the lexicon, machine in
addition to this lexical term, also showed all possible splits of such
words. For example, for sambandhavacchinna is split as sambandha
+avacchinna and also as sambandha +ava +chinna and so on. The sec-
ond one should be pruned out since in the context of Navya-Nyaya,
avacchinna being a technical word need not be split further. So we
needed a splitter that discards splits of morphologically analysable
long words. We describe below the algorithm of this splitter followed

by its performance on the development data as well as the test data.

3The technical term for such base forms in Sanskrit is the one with punivadbhava.

30

Algorithm of SCL-NN segmenter

The main aim of this algorithm is to reduce the over-generation en-
suring that the imposed conditions do not under-generate and at the
same time, push the most preferred solution to the top of the possible
solutions. The over-generation and the under-generation are mea-
sured only with respect to the NN vocabulary. Thus a split which
is an over-generation from the NN point of view may be a genuine
split in the classical Sanskrit. The salient features of the algorithm are
stated below.

1. The sandhi rules are of the form u — v+ w; f, where f indicates
the frequency of the rule which was observed in the Sanskrit
Consortium Corpus@. Even if u is just a concatenation of v and
w, without any underlying phonetic change, then also we treat

it as a sandhi rule, in order to use the frequency information.

The splitter scans the string from the left and looks for the
longest match each time. At each juncture, typically more than
one sandhi rules are available. In case there are more than one
applicable rules, the one with longer u is preferred over the
smaller ones and in the case of two rules with matching « of

equal length, the one with the higher frequency is chosen.

For example, consider a string adhikaranatanirupaka. There are

two possible splits for this viz. adhikaranata + nirupaka, and

4This corpus developed by Sanskrit Consortium, which is manually tagged of
around 150K words and has around 30K examples of compound words. Refer -
“Statistical Constituency Parser for Sanskrit Compounds” of Amba Kulkarni and
Anil Kumar, ICON-2011.

31

adhikaranata + anirupaka. The first split corresponds to a split
rule an — a + n, which involves a window of two phonemes.
The second split corresponds to the split rule @ = @ + a which
involves a context of only one phoneme. The preference for
two phoneme rule produces the split adhikaranata + nirupaka
before other split adhikaranata + anirupaka. Thus we ensure

that the most likely output appears before the other solutions.

There are four ways in which a can be split, viz. a+a, a+a, a+a
and a+a, with the frequency of occurrence in the Sanskrit Con-
sortium corpus as 3413, 2072, 350 and 233 respectively. Ma-
chine uses these rules in the decreasing order of frequency to
ensure that the most probable one is reported first.

. Preference is given to the NN vocabulary over others.
The expression avacchinnakaryata is wrongly split as
avacchinnaka+aryata as the more preferred one rather than the
correct split avacchinna-+karyata, because greedy match prefers
the longest component in the beginning. As we notice, the
phoneme sequence “ka' can be potentially a taddhita suffix of
the first component as well as an initial sequence of an NN
technical vocabulary. We resolve such conflicts in favour of
the NN technical vocabulary.

. The splitting is done recursively following the depth first
search. The boundaries at which the string is split and the
split rule used are remembered. The string is not split twice
at the same place with the same split rule. This is to avoid the

further splitting of bigger components and thereby increasing

32

the precision. For example, a string pratiyogitanirupaka is split
as pratiyogita+nirupaka with a rule an — a+n and as pratiyog-
ita+anirupaka with a rule @ — a+a. But the string pratiyogita is
not split further as prati+yogita, nor is nirupaka as ni+rupaka.

4. The treatment of punivadbhava in the derivational morphology
of compounds help in pruning out the wrong splits such as
nistha+adheyata for nisthadheyata. Pumvadbhava ensures that
we get only the valid split nistha+adheyata.

5. A split is considered to be an over-generation if it does not con-

tain any NN technical term.
Analysis of the Result

Our aim was to improve the precision and also get the correct solu-

tion to the top of the list. We first discuss the precision and recall.
Precision and Recall

We tested 49 NNEs collected from Aloka commentary of Tarkasar-
graha on both the Sanskrit Heritage splitter as well as the SCL-NN
splitter. The number of possible splits produced by both these split-
ters is reported in Table-@ and Table—.

No of Solutions | No of Cases
0-100 10
101-1,000 15
1,001-100,000 18
100,000 5
Time-out 1
Total 49

Table 2.1: Number of solutions of Sanskrit Heritage Splitter

As is obvious from the tables, the number of solutions is reduced

33

No of Solutions | No of Cases
0-5 14
6-10 11
11-100 18
101-1000 5
1000 1
Total 49

Table 2.2: Number of solutions of SCL-NN Splitter

drastically, increasing the precision.

The result of the test data of 352 examples (see Table—@) from Parn-
calaksanisarvasvam also confirms that the new algorithm prunes out
all irrelevant splits. The recall is around 91%, which is as good as the
recall of Sanskrit Heritage splitter and at the same time, the number
of solutions is reduced substantially, increasing the precision almost

100 times.

No of Solutions | No of Cases | Percentage
0-5 196 55.7
6-10 56 15.9
11-100 72 20.4
101-1000 13 3.6
1000 3 1
No Split 12 3.4
Total 352 100

Table 2.3: Number of solutions of SCL-NN Splitter

Correct Solution

We compared all the generated solutions with the manually tagged

Gold data. The Table—@ shows the number of cases corresponding

34

to the position of the correct solution among the ones produced. In 42
cases, the first solution produced by the machine was the correct one.

Later we tested examples from Pancalaksanisarvasvam. The results

Position | No. of Cases | Percentage
1 42 86
2 2 4
3 4 8
7 1 2
Total 49 100

Table 2.4: Position of the correct solution in the Development data

are shown in the Table—@.

Position No. of cases | Percentage
1 264 75
2-5 42 11.9
6-10 6 1.7
11-100 7 2.0
101 2 0.6
No Split 12 3.4
No-correct solution 19 5.4
Total 352 100

Table 2.5: Position of the correct solution in the test data

2.4 Samsadhani-NN Segmenter with con-

trolled lexicon

The above two approaches, in stages, improved the precision as well
as recall of the NNE segmenter. But still, the segmenter was not us-
able by a Naiyayika. The Naiyayika always wondered if a human
being can split the compound in a unique way, why does the ma-

chine find it difficult? Can we reduce further the “ambiguities' the

35

machine encounters? The answer is yes. We looked at the multiple
splits produced by the segmenter and identified the impossible splits
and provided the reasons for pruning them out. The main reason
was that every expression had some word in it which was not found
in the lexicon and hence the expression was split in a wrong way.
This prompted us to build a special morphological analyser with the
vocabulary from the Nyaya texts. The lexicon for the morphologi-
cal analyser was built from the high-frequency words found in the

Nyaya texts. This change resulted in a drastic improvement in the

performance.
No of solutions | Cases | Percentage
1 340 96.59
2 12 3.40
Total 352 100

Table 2.6: Performance of Samsadhani-NN splitter on test data

The performance of this segmenter over the 49 examples from the
aloka commentary of Tarkasangraha was 100%. And also 352 exam-
ples from Pancalaksanisarvasvam are shown in Table-@. These re-
sults confirm that the newer algorithm prunes out all irrelevant splits.
The recall is 100%, against the recall of 97% of Sanskrit Heritage en-
hanced splitter for NN and the previous version of Sarhsadhani seg-
menter. At the same time, the total number of splits is reduced sub-
stantially, increasing the precision to 97%. Another remarkable point
is, in all the examples the correct split was always found at the first
place.

With both the segmenters - Heritage and SCL, performing well, we

moved further to our next task of building a constituency parser for

36

a segmented NNE. The Heritage segmenter needed a human interac-
tion in choosing the correct parse, while the SCL segmenter was fully
automatic. The user is given a choice to select the segmenter of his
choice. In the next chapter, we describe the constituency parser for

NNE.

37

Chapter 3

Constituency Parser for NNE

Constituency parser takes a segmented compound as an input and
produces a binary tree showing the syntactic composition of the com-
pound. The segmented expression needs further analysis to get the
underlying constituency structure. For example, a compound with
three components a-b-c may be analysed in two different ways viz.
(a-(b-c)) and ((a-b)-c). As the number of components increase, the
number of possible analyses grows fast, and is represented by a Cata-
lan number (10). It is the meaning compatibility (samarthya), that
triggers the correct analysis. Kulkarni and Kumar(21) proposed a
statistical constituency parser that uses the statistical properties of
a tagged corpus to model the samarthya. Due to unavailability of the
tagged corpus for NN, it was not possible to follow this approach for
parsing. The well-defined syntax of NNEs discussed by Ganeri(9)
motivated us to look at the constituency parsing of NNE afresh from

the computational linguistics point of view.

38

3.1 Syntax of NN Expressions

The NNEs are compounds. According to Matilal(27), *“The NN Ex-
pression involves a small number of technical terms together with a
non-logical vocabulary”. In order to develop a parser for NNEs, we
need to understand the syntax of an NNE, in terms of the categories
of the constituents involved and the arrangement of the terms be-
longing to various categories. Ganeri(9) in the informal description
of the NN classifies the constituents of an NNEs into 6 categories.
1. Primitive Terms
These are the nouns such as ghata “pot', bhutala ground', gandha
“smell’, etc..
2. Abstract Functor
This is a derivational suffix “tva' or "ta' (-ness or -hood), that
maps a noun to an abstract noun. For example, the smell is
mapped to smell-ness, pot to pot-ness.
3. Relational Abstract Expressions
The relational abstract expressions are derived from relation-
denoting terms by adding a “tva' or “ta' (-ness or -hood) suf-
fix. For example, pitr “father' is a relation-denoting term. By
adding “tva' suffix, it changes to pitrtva “father-hood', a rela-
tional abstract expression. Some other relational abstract ex-
pressions are putratva “son-hood', adheyata “superstratum-ness'
and adhikaranata “substratum-ness'.
4. Conditioning Operator
The conditioning operator nirupita “determining’ operates on

the relational abstract expressions to form a term. For example,

39

X-nirupita-pitrtva “father-hood determined by X'.
5. Sentence-forming Operator

The terms such as nistha ‘resident in' and avacchinna ~delim-

ited by' combine a relational term with another term to form an

NNE.

6. Negation Functor

abhavah “Negation/absence'.
These 6 categories help in understanding both the syntax as well as
the semantics of the NN Expression. Our ultimate goal is to represent
an NNE as a Conceptual graph. A Conceptual graph distinguishes
between a concept and a relation. With this at the back of your mind,
we re-looked at this classification. Before we look at the classification,
we need to understand the role of the derivational suffix tva.
In NN technical language, the tva suffix occurs in two different con-
texts. One is tva as in "ghata-nistha-ghatatvam' and another is tva as in
“ghata-bhedatvam'. In the first example, " ghatatvam' represents an in-
trinsic property of ghata which resides in ghata. So the anuyogin and
pratiyogin of “nistha' relation are “ghata' and " ghatatvam' respectively.
Thus here the tva suffix is attached to the second component of the
compound. In the second example, suffix tva is attached to the com-
pound ghata-bheda. Here tvais not the property of bhedabut of ghata-
bheda. This difference can be captured by the parse. The first one will
be represented as ((ghata-nistha)-ghata”tvam) and the second will be
represented as (ghata-bheda)”tvam. In the first case, suffix tva is part
of a component of the compound. But in the second case, tva oper-
ates on a compound. Soitis necessary to disambiguate between these

two usages. The matup suffix as well has the same ambiguity. For

40

example, consider " ghatapatatvavat' and “sadhyabhavavat'. 1f we look
at the parsed output of both, the first one is (ghata-patatva”vat) and
the second one is (sadhya-abhava)”vat. So at the segmentation level,
we split these secondary suffixes vat and tva and separate them with
a caret *"' sign.

Among the six categories of Ganeri, the primitive terms and the rela-
tional abstract expressions represent the conceptual terms. Condition-
ing operators and sentence-forming operators represent the concep-
tual relations. The abstract functor "tva' suffix is a morpheme which
denotes a derivational suffix that maps a noun to an abstract noun.
In addition to the abstract functor -- the “tva' suffix, we also need a
derivational suffix “vat' (possessing) which maps an abstract term to
a noun. We treat tva and vat as relations. The reason for considering
them to be relations and not concept term will become more clear in
the next section where we discuss some salient features of NNE. Ta-
ble - @ shows the contrast between our classification with Ganeri's

classification.

Ganeri’s classification Our classification
Primitive term
Relational Abstract Expression Conceptual term
Negation functor
Abstract functor
Conditioning Operator Conceptual Relation
Sentence-forming Operator

Table 3.1: Difference of classification

41

3.2 Some salient features of NNEs

¢ Further observations of these NNEs reveal that the concepts
and the relations as described above, alternate in an ex-
pression. For example, consider gandhatva-avacchinna-gandha-
nistha-adheyata. Here the components gandhatva, gandha and
adheyata denote the concepts and the components avacchinna
and nistha denote the relations.

* Every relation is binary. The two relata are called anuyogin and
pratiyogin. A relation in NN is always a relation of some-
thing(pratiyogin) in something(anuyogin)".(Kulkarni(20)) If "R’ is
a relation which connects two concepts "a' and “b' resulting in
an expression "a-R-b’, then the term "a' is called a pratiyogin and
the term "b'is called an anuyogin. For example, in the expression
gandha-nistha-adheyata, the term gandhais the pratiyogin and ad-
heyata is the anuyogin of the relation nistha. Such a compound
thus always will be parsed as ((a-R)-b) and never as (a-(R-b)),
i.e. as ((gandha-nistha)-adheyata) and not as (gandha-(nistha-
adheyata)). Pratiyogin always is to the immediate left of the re-
lation. Thus this constraint rules out almost half of the possible
parses. The Anuyogin, on the other hand, need not be to its im-
mediate right and this results in ambiguity. While with three
components, then, the NN Expression “a-R-b' is not ambigu-
ous, with five components “a-R-b-S-c¢' where "a’, 'b' and "¢’ are
the concept denoting terms and "R’ and S’ are the relation de-
noting terms, there is an ambiguity with the anuyogin of 'R'. The

two possible parses being, ((a-R)-((b-S)-c)) and ((((a-R)-b)-S)-c).

42

In the first case the anuyogin of "R' is “c', while in the second, it
is “b'. It is the context that tells us which parse is correct.

For example, in samavayasambandha-avacchinna-gandha-nistha-
adheyata, the anuyogin of avacchinna is adheyata, while in
dravyatva-avacchinna-gandha-nistha-adheyata, the anuyogin of
avacchinna is gandha. So, if there are 'n' concept nodes after a
relation node "R, the anuyogin of "R’ potentially can be any of
these "n' concept nodes. It is the context that decides which is
the correct anuyogin.

Another important feature of the NNE is the well-nested con-
straint. The resulting constituency structure should be well-
bracketed, without any crossings. In other words, if the anuyo-
gin of a relation at k™ position is at j', then the anuyogin of any
relation lying between “k' and °j' can not be beyond “j'.

Further, in an NNE, the relation term ‘nirupita’always connects
mutually related relational abstract expressions. For instance,
adheyata and adhikaranata are mutually related relational ab-
stract expressions, similarly pitrtva and putratva are mutually
related relational abstracts. Thus the pratiyogin of a nirupita re-
stricts the anuyogin to be the mutually related abstract expres-

sion.

These 4 conditions viz.

(i) Concepts and Relations alternate, (ii) pratiyogin of a relation is al-

ways to the left, (iii) the constituency structure is well-nested and (iv)

the pratiyogin and anuyogin of nirupita are mutually related relational

abstracts reduce the possible parses to a considerable degree.

43

3.3 Building a constituency Parser

We have seen above that it is not possible to decide the anuyogin of

a relation automatically. It is the context which plays an important

role in the disambiguation. Therefore, we decided to build an user-

interface that will assist a user to provide the inputs interactively in

order to parse the given segmented compound expression.

The process of human assisted parsing is described below.

1.
2.

A segmented compound is an input to the parser.

Machine identifies the category of each component as either a
concept or a relation.

For each relation, the component to the immediate left is
marked as its pratiyogin.

Taking into consideration the constraints viz. well-nested-ness
and the related relational abstracts in the case of nirtipita, we

list all possible anuyogins for each relation.

. This data is then presented to the user through an interactive

interface as shown in Figure - El]

The input for this is the segmented string
samavayasambandha-avacchinna-gandhatva-avacchinna-gandha-
nistha-adheyata-nirupita-adhikaranatavat-vastu

In this figure, the first row of the table contains the components
of the given compound, the second row gives the index of each
component and the third row lists all the possible indices of the
anuyogins for each relation term. You can also notice that the
relation term nirupita has adheyata as its pratiyogin and hence

following the constraint described above, it automatically chose

44

DI ESIEa

A Constituency Parser for Navya-Nyaya Expressions

Department of Sanskrit Studies, University of Hyderabad.

Semi-Automatic Parser
Columns in correspond to the relation terms
The anuyogin (37) of a relation is a to its right.
To get the parse, manually select the anuyogin for each relation term.

wmﬁm apafeve = s || ommm ([Fm i T || Frefi || st || @ ||oe
2 3 || 4 5 6 T 8 9 10 1 (|12
3:3,4,68,10,12 |34 || - ||[e@:68,10,12| - ||eg:81012)| - |fs@10 B 12

Figure 3.1: A screen-shot of the interface

adhikaranata as its anuyogin.

When the user selects an Anuyogin, then the nested parenthe-
sis constraint removes all incompatible solutions reducing the
possibilities at each selection. For example, after the user selects
8 below the 2"d avacchinna, the possible anuyogins for the rela-
tions at 5’4 and 7'h position also reduce following the proper
nested constraint stated earlier. Figure - @ shows the possible
anuyogins after this selection.

The anuyogin below the concept term gandha needs some clar-
ification. gandha and tva both are concept terms. An implicit
unspecified relation is imagined between these two concepts,
the pratiyogin of which is gandha and anuyogin tva. We show
this anuyogin in the 3"d row under the concept gandha. We ex-

tend this to other cases as well when the NN Expressions do not

45

DI ECIREA

A Constituency Parser for Navya-Nyaya Expressions

Department of Sanskrit Studies, University of Hyderabad.

Semi-Automatic Parser
Columns in correspond to the relation terms
The anuyogin (37) of a relation is a to its right.
To get the parse, manually select the anuyogin for each relation term.

|| smfesw || u ([oma || oratees[eer [e ||| amien | [t |[sifEmeomr | @ ([
1 B s [a]] 5 [[e[7]] 8 9 10 1 |12
g8 |[arg4 || - || o368 || - ||eE8 - 10 - 12

Figure 3.2: A screen-shot of the interface after user-selection

specify the relations between the concepts explicitly. For ex-
ample, the expression ghata-abhava-vat-avrttitvam has two con-
cepts ghata and abhava as consecutive nodes. In such cases, we
treat them as a compound with unspecified relation and pro-
duce a parse: (((ghata-abhava)-vat)-avrttitvam). In this case, an
implicit relation is imagined between ghata and abhava. The
pratiyogin of this relation is ghata and the anuyogin is abhava.
This anuyogin showed below the ghata.

6. The user repeats step 5 until all ambiguities are removed and
each relation has one and only one anuyogin.

7. This tableis then converted into a nested parenthesis expression
by introducing an open parenthesis before pratiyogin of each re-
lation term and a closed parenthesis after anuyogin of each rela-

tion term.

46

Chapter 4

Type-Identifier

4.1 Earlier efforts

Semantically Panini classifies Sanskrit compounds into four major
types: a) Avyayibhava, b) Tatpurusa, c) Bahuvrihi, d) Dvandva. This
classification is not sufficient for the complete understanding of a
compound. For example, the paraphrase of a compound gandhatva-
vacchinna is gandhatvena avacchinna, while the paraphrase of ghatab-
havahis ghatasya abhavah and both of them belong to the same class of
Tatpurusa. In the given instances, the paraphrases are different due
to the semantic differences and it happens in all the types of com-
pound. Based on their semantic differences, these compounds are
turther sub-classified into 59 sub-types. The types and sub-types of
the compound are based on standards evolved by the project enti-
tled “Development of Sanskrit Computational Tools and Sanskrit-Hindi
Machine Translation System” sponsored by Ministry of Information
Technology, Government of India, New-Delhi.(See Appendix - A)

There are very few efforts in the automatic detection of a compound

47

type and sub-type. Kumar et al.(26) discuss the steps involved in
the analysis of Sanskrit compounds and show how the corpus statis-
tics helps in building a type identifier. Later in 2013, Kulkarni and
Kumar(25) used clues from Panini's Asthadhyay1 in identifying the
types of certain compounds. They have critically gone through the
Paninian stitras related to compound formation providing semantic
clues. They used a proper combination of both statistical and rule-
based methods to decide the compound type semi-automatically.
Kulkarni et al.(22) extend this work further for modern Indian lan-
guages. They discuss how semantic classification of Panini can be
applied to modern Indian languages, with a focus on Hindi and
Marathi. According to them, access to the semantic content of the
components and also wider context is needed to decide the type of a
compound.

The NNEs have the specific vocabulary and the compound type is
predictable in many cases. We decided to take advantage of this fact

and build a domain-specific type-identifier for NNEs.

4.2 Analysis of NNE compounds

Compounding of words is always between two components at a time,
except in Dvandva, Bahupada-Bahuvrihi and Bahupada-Tatpurusha
compounds. Regarding the components of an NN compound,
Matilal(27) observes: “The NN Expression involves a small number
of technical terms together with a non-logical vocabulary'. Thus,
the components in an NN compound are of two types: 1) a rela-
tional term and 2) a non-relational term. Examples of relational

terms are avacchinna, nirupita, nistha. Relational and non-relational

48

terms both can appear either as a first (purvapada) component or
as a second (uttarapada) component. For example, in a compound
ghatatva-avacchinna, the term avacchinna is the second term. Now
consider a compound with three components ghatatva-avacchinna-
adheyata, which is parsed as ((ghatatva-avacchinna)-adheyata). Here,
avacchinna is the second component of a compound ghatatva-
avacchinna and is the semantic head of the compound. This com-
pound is further combined with adheyata to form a complex com-
poundﬁl. Similarly, we can find examples where the words nistha,
nirupita, etc. also can appear either as the second term or as the head

of the first term of a component.
Semantics of compounds with avacchinna as one component

The term avacchinna, as Ganeri(9) describes it, is a sentence form-
ing operator. It joins two terms say "X' and "Y' into a sentence
“X-avacchinna-Y'. Now “X-avacchinna-Y' is always to be parsed as
((X-avacchinna)-Y). And this will be then paraphrased as Y which
is delimited by X'. For example, the three component compound
((ghatatva-avacchinna)-adheyata) will be paraphrased as ghatatvena-
avacchinna ya sa adheyata “The super-stratum-ness, which is de-
limited by pot-ness'. Generalising this, the paraphrase of ((X-
avacchinna)-Y) will be “X{3} avacchinna yat tat Y', where {3} in-
dicates the instrumental case suffix. Now, following the annota-
tion scheme developed by the Sanskrit consortium, we represent
this as “((X-avacchinna)T3-Y)K1', where "T3' stands for an endo-

centric compound with a relation expressed by the instrumental

!samastapada-garbhita-samasa

49

case suffix (Trtwya-Tatpurusa) and “K1' stands for a copulative com-
pound with an adjective as the first component (Visesana-purvapada-

Karmadharaya).
Semantics of compounds with nistha as one component

The term nistha is another sentence forming operator as described
by Ganeri. Similar to avacchinna, *X-nistha-Y' is always to be parsed
as ((X-nistha)-Y). And this will be then paraphrased as “Y (which
is) residing in X'. For example, the three component compound
((ghata-nistha)-ghatatvam) will be paraphrased as ghate-nistham yat
tat ghatatvam. If we generalise, the paraphrase of ((X-nistha)-Y) will
be “X{7} nistha yat tat Y', where {7} indicates the locative case suf-
fix. avacchinna, yat and tat will assume the correct form following
the gender of Y. Now, following the same annotation scheme, we
represent this as *((X-nistha)T7-Y)K1', where “T7' stands for an endo-
centric compound with a relation expressed by the locative case suffix

(Saptami Tatpurusa).
Semantics of compounds with nirupita as one component

The term nirupita is termed as a conditioning operator by Ganeri.
It also takes two arguments “X' and "Y' to generate a new term “X-
nirtipita-Y'. This expression is always parsed as ((X-nirupita)-Y).
Its paraphrase is Y (which is) described by X'. For example, the
three component compound ((adheyata-nirupita)-adhikaranata) will
be paraphrased as adheyataya-nirupita ya sa adhikaranata. If we gen-
eralise, the paraphrase of ((X-nirupita)-Y) will be “X{3} nirtpita ya
sa Y', where {3} indicates the instrumental case suffix. Now, follow-

ing the same annotation scheme, we represent this as *((X-nitipita)T3-

50

Y)K1', where "T3' stands for an endo-centric compound with a rela-
tion expressed by the instrumental case suffix (Trtiya- Tatpurusa).

Thus we see that the relation term as the (head of) second component
or the (head of) the first component decides the type of a compound.
Appendiz B gives the list of relation terms along with the possible
type of the compound when they are the (head of the) first or the
(head of the) second components. If either 1° or the 2" component
of a compound is not a relational term then the usual rules of classical
Sanskrit are applicable. Now we look at the context-free grammar of

this tool.

4.3 Context-free grammar

CFG is a particular type of formal grammar discussed in formal lan-
guage theory. These formal grammars are divided into four classes.
This classification is due to Noam Chomsky((5),(6)) and it is known
as ‘Chomsky hierarchy’.

* Type-0 or Unrestricted grammar.

¢ Type-1 or Context-Sensitive grammar.

¢ Type-2 or Context-Free grammar.

* Type-3 or Regular grammar.
NNESs can be generated with Type-2/Context-Free grammar.
If a compound has only two components, then the extraction of both
the component is trivial. However, when a compound has more than
two components, we need to have a parse of the compound show-
ing how the components are joined one at a time. With a compound
with 'n' components, there will be *n-1' compounds. Each compound

will have two components, which may themselves be compound.

51

Thus given such a parsed structure, expressed linearly, now we need
to scan this parsed structure and identify the first and second com-
ponents at each level. This problem is similar to the evaluation of
a mathematical expression involving nested parenthesized expres-
sions. The context-free grammar to analyse such an expression is
given in Table-@. For each nested compound, the head is synthe-
sized from its components and finally, the compound type is decided
with a function taking two arguments viz. the 1** and 2" component.
The function then computes the type following the rule specified in

Appendiz-B.
NNE : compound

compound : Ppada ‘-’ Upada

Ppada : ‘(pada

Upada : pada ‘)

pada : compound
| concept

Y

Table 4.1: Context-free Grammar to identify the compound-types

The production rules with the attributes of the CFG is shown in Table-
13

In this grammar, "Ppada’ stands for a purvapada “the first compo-
nent' and “Upada' stands for an uttarapada “the second component'.
The input for this grammar is a parsed compound. Note that Ppada
and Upada consume the open and close parenthesis along with the

component. The type of the compounds depends upon the heads of

52

NNE : compound

compound : Ppada ‘-’ Upada
1.type = f(Ppada.head, Upada.head)

Ppada : ‘(" pada
T.head = pada.head

Upada . pada ‘)’
T.head = pada.head

pada : compound
T.head = |.head
| concept
T.head = |.head

I

Table 4.2: Production rules with attributes

Ppada and Upada. For instance, let the input be ((gandha-nistha)-
adheyata). In this input, " (gandha' is the purvapada and “nistha)' is
the uttarapada for the first level of compounding. Then at next level,
*((gandha-nistha)' is the purvapada and ~adheyata) is the uttarapada.
The word or pada after the symbols (,) is the key to identifying the
types of the compound in any NNE. In the above instance, gandha
and adheyata are non-relational terms and nistha is a relational term.
Hence, as discussed above, when nisthais uttarapada, then the type of
that compound is T7 - Saptami- Tatpurusha. 1f it is the head of the pur-
vapada, then the type of compound will be K1 - Visesana-purvapada-
Karmadharaya. Similarly, when avacchinna is a uttarapada, the com-
pound type will be T3 - Trtiya- Tatpurusha and if it is head of purva-

pada, then it will be K1 - Visesana-purvapada-Karmadharaya.

53

The constituency parse of the expression ((gandha-nistha)-adheyata)

following this grammar is shown in Figure @ We will see how the

compound ‘

"Ppada |

|:(Pada |

[compound|

|.. Upada |

e L

a:;:'ﬁ'i'étﬁé:j:. M (-]

N
- -

m m 'gandha \\édheyatéJ |)_\

L

|' Non-technical_term | | Technical_Term | | Non-technical_term |

Figure 4.1: Constituency parse corresponding to the grammar

head gets computed in Fig @ and Fig @ with the same example.

From Figure - @, we see that the head of the compound(gandha-
nistha) is nistha and hence the compound type is T3. Later, from
Figure - @ we notice that the head of the compound(((gandha-
nistha)-adheyata)) is adheyata and the head of the purvapada is nistha.

o4

NNE

compound |

pada > Ppada

Upada
“compound head
[igandharj \nlstha \;Edheyaté\\
(Label = gandha [Label=nistha| ~[Label=adheyata|

Figure 4.2: Head-info computed according to the grammar - step 1

NNE

compound |

head

pada > Ppada
Upada

‘.' compound

I,gandha ‘ \mstha \:Edheyaté\\

|/ Label = gandha-] LLabel = nistha | Label = édheyaté]

Figure 4.3: Head-info computed according to the grammar - step 2

55

Therefore the compound type is K1. Thus the whole compound is

(((gandha-nistha) T'7-adheyata)) K1.

4.4 Analysis of the result

We tested this type identifier on 352 NNEs collected from
Mathuripaficalakshanisarvasvam. Each NNE has more than two
components. The minimum number of components were 3 and the
longest NNE has 40 components. The 352 NNEs together had 2329
binary compounds. Of these 1340 compounds could not be identi-
fied, since none of the components of these compounds was from the
NN technical vocabulary. Remaining 989 compounds are recognised
correctly. Among the 59 fine-grain compound types, only 8 types
of compound are used with NN technical vocabulary. These types
are - K1 (Visesana-purvapada-Karmadharaya), T3 (Trtwya- Tatpurusha),
T6 (Sashthi- Tatpurusha), Bs6 (Sashthyartha-Bahuvrihi), T7 (Saptami-
Tatpurusa), K6 (Sambhavana-purvapada-Karmadharaya), TS (Pancami-
Tatpurusha), Tds (Samahara-Dvigu). Table-@ gives the classification
of these compounds along with their frequency of occurrence. Our

grammar could recognise all of them correctly.

4.5 Conclusion

This is an effort to ease the process of understanding NNEs with the
assistance of a computational device. Once the compound types are
identified, itis possible to generate the paraphrase also automatically.
In order to identify the compound types of the compounds which
do not involve NN technical terms, we need the lexical semantics.

Anil Kumar(24) and Pavankumar(37) have listed various semantic

56

Tag | No. of cases
K1 283
Bs6 203
T6 186
T3 178
T7 74
K6 45
TH 13
Tds 7
| Total | 989 |

Table 4.3: Frequency distribution of identified compound types

features that are needed for the analysis as well as the generation of
the compounds. Further, the advances in machine learning will also
help in identifying suitable parameters for correct identification of

the compound types.

57

Chapter 5

Graphical Representation

Graphical Representation is a visual display of a data using the graph.
This schema is one of the effective way to express the complex things
in a easier way. If a complex NNE can be represented faithfully
through a graph, it will be helpful to students and the others as well

to understand it in a better and easier way.

5.1 Earlier efforts

Representing of NNEs in graph structure is not a latest phenomenon.
Traditional scholars have also used this method in teaching the NN
to their disciples in a potential way. Vamacarana Bhattacarya (1880-
1931) used the graphs in his teaching(33). Figure - El] shows one such
example.

There are many noteworthy efforts in recent times by many scholars
to simplify the complexity of the NN using graphs as we mention
earlier. Jha(16) is well-known for his way of teaching using the dia-

grams. He came up with his own diagrammatical representation to

58

Figure 5.1: The graphs used by traditional scholars

explain the NN theories. He mentions that he learnt it from one of his
Japanese student long back to understand the NN using diagrams.
He improved the notations as well. In 1994, Kulkarni(@) put an use-
ful effort in understanding the NN structure. She took the five defini-
tion of invariable concomitance (Jagadisi Paficalaksani) and tried to
explain using the graph. The graph used by Kulkarni is modified ver-
sion of the Conceptual Graphs. This effort is to build a connection be-
tween Indian and western logicians. Wada(@) also used the graphs
in his works. He also analysed the NN language and its technicality
and explained it in a simpler way. Kulakarni and]oshi(@) used the
graphs in simplifying the language of NN in a unique way. This is
an attempt to show the relevance of the NN in today's age to the tra-
ditional scholars and to help the people from technical backgrounds
like computer science and western logic who are interested to know
the contribution of Indian logic and its historical role. Patil(@), being
a traditional scholar, used graphs in his work for the convenience of

explaining the NN theories. Though this work is in Sanskrit, he clar-

59

ifies many of the core technical queries with his simplicity in expla-
nation.

These were all manual and inspired by these great efforts, we wanted
a tool that renders the graph automatically. So we build a graph ren-
derer for NNEs, following the structure of Conceptual Graphs(CGs).
We chose CGs as a representation, since CGs are well studied as well
as linked to the First Order Logical analysis, inference engines etc.

Let us see the details of Conceptual Graph.

5.2 What is Conceptual Graph?

The Conceptual Graphs(CGs) was originally designed as a seman-
tic representation for natural language. It is developed by John F.
Sowa(4#2). As mentioned in the official web-page of CG - *CGs are
a system of logic based on the existential graphs of Charles Sanders
Pierce and the semantic networks of Artificial Intelligence'. The im-
portance of this CG is -
¢ Itis easily readable and formal for computational purpose.
¢ It represents both the linguistic structure as well as the knowl-
edge structure.
* CGis general. Parse trees, Petri nets etc. are special cases of this
representation.
For instance, A cat is on a mat" is represented in CG as in Figure -

- Here “cat' and “mat' are the concepts and are represented using

Cat Mat

Figure 5.2: An example of CG

60

boxes and the relation “on' is represented using an oval.

As mentioned by Sowa in Frank Van Harmelen and Porter(8), graph-
based semantic representations were famous in theoretical and com-
putational linguistics. Margaret Masterman (1961) introduced the se-
mantic networks, which is a graph-based notation. Correlational nets
introduced by Silvio Ceccato are based on 56 types of different rela-
tions. Dependency Graph presented by David Hays, formalised the
notation developed by the linguist Lucien Tesniére in 1959. These ef-
forts succeeded in representing the relational structures underlying
natural language semantics, but failed to convey the full First Order
Logic(FOL).

In the late 70s, number of graph notations were designed to repre-
sent the FOL. CG is also one of the effort in the same way as an inter-
mediate language for mapping natural language questions and as-
sertions to a relational database. CG is basically extended version
of Charles Sanders Pierce's Existential Graphs. So once we are suc-
cessful in representing the NNEs in CGs, then it will be easier for
researchers trained in western logic to understand the structure of
NNEs.

Another important reason we chose the CG is because there is a simi-
larity in structure of both NNE and CG. As discussed by Polovina(34),
CG has a general form as shown in Figure - @

Concept | Concept2

Figure 5.3: General form of CG

61

This may be read as - “"The Relation of Conceptl is a Concept2". The
arrows shows the direction the diagram should be read. This gen-
eral form is similar in NNEs as well. In an NNE also we saw in the
previous chapter, Conceptl is followed by a Relation, which is fol-
lowed by a Concept2. Figure - @ shows the structure for an NNE

gandha-nistha-gandhatvam.

gandha (Concept 1) gandhatvam (Concept2)

Figure 5.4: General form of an NNE

This particular similarity also made us to chose CG over other graph-
ical representation schemes.

Another point to be mentioned is the display form of the CG in our
research work were produced using the Graphviz softwarell. Now we

look at how CG is used for NN Expressions.

5.3 Conceptual Graphs for NN Expres-
sion

The canonical form in NN is "X has Y'. For example, the canonical

form corresponding to the sentence

Father of Rama is Dasharatha. (1)

is

Lwww.graphviz.org

62

Dasharatha has father-hood of Rama. (2)

The preposition “of' being ambiguous, this is further disambiguated

as

Sanskrit: Rama-nirupita-pitrtva”van Dasarathah 3)
Gloss: Rama-determining-fatherhood-possessing Dasharatha

English: Dasharatha has father-hood determined by Rama
or, more precisely as

Sanskrit: Rama-nistha-putratva-nirupita-pitrtva”van Dasarathah (4)
English: Dasharatha has father-hood determined by the son-hood
resident in Rama.

NN Expression in (3) is an abbreviated version of the NN Expres-
sion in (4). In these expressions the terms father-hood (pitrtva) and
son-hood (putratva) are the abstract terms derived from the relation
denoting terms “father', “son' etc. and hence these are termed as re-
lational abstracts. The terms nistha (residing in), nirupita (described
by) and van (possessing) denote the relations between the conceptual
terms. The term nirupita “determined by' is a relational term which
conditions the relational abstract properties. The NN Expression in
(4) is represented in conceptual graph as in Figure @ If we read
this CG in Figure 2 along the directions of the arrow, we get the NN
Expression in (4). When a conceptual node has more than one incom-
ing arrows, there are multiple ways of producing the NN expression.

To have a one-one correspondence between the NN Expression and

63

putratva nirtpita pitrtva
(son-ness) (determining) (father-hood)

nistha
(residing in)

vat
(possessing)

Rama Das’ar.athah
(Rama) (Dasharatha)

Figure 5.5: Conceptual Graph for (4)

the CG, we mark the position of the component in parenthesis. The

modified CG for (4) is shown in Figure @

putratva nirtipita pitrtva
(son-ness) (3) (determining) (4) (father-hood) (5)
nistha vat
(residing in) (2) (possessing) (6)

A

y
Rama Dasarathah
(Rama) (1) (Dasharatha) (7)

Figure 5.6: Conceptual Graph with position information for (4)

Consider now another sentence.

Sanskrit: Ramah hastena brahmanaya dhanam dadati. (5)
Gloss: Rama{nom.} hand{instr.} Brahmin{dat.] money{acc.}
give{pres., active, 3sg}.

English: Rama gives money to a Brahmin with (his) hands.

The verbal cognition for this sentence according to the grammarian

school is

64

Sanskrit: rama-nistha-kartrtva-nirupaka-hasta-nistha-karanatva-
nirupaka-brahmana-nistha-sampradanatva-nirupaka-dhana-nistha-

karmatva-nirupaka-danakriya. (6)
English: An activity of giving characterised by the agent-hood
in Rama, the instrument-ness in the hand, the recipient-ness in a

Brahmin and the object-hood in the money.

Figure @ shows the rendering of this expression as a conceptual

graph. The Nyaya school differs from the grammarian's school in

danakriya (17)
(action of giving)

nirtpaka (4)
(described by)

nirtipaka (8)
(described by)

nirtipaka (12)
(described by)

nirtipaka (16)
(described by)

kartrtva (3) karanatva (7) sampradanatva (11) karmatva (15)
(agent-hood) (instrument-ness) (recipient-ness) (object-hood)

nistha (2)
(residing in)

nistha (6)
(residing in)

nistha (10)
(residing in)

nistha (14)
(residing in)

A

rama (1) hasta (5) brahmana (9) dhana (13)
(Rama) (hand) (Brahmin) (money)

Figure 5.7: Conceptual Graph with position information for (6)

terms of the chief qualificand of this cognition. While for a gram-
marian the activity is the chief qualificand, for a logician the chief
qualificand is the term in nominative case.

So the verbal cognition according to the Nyaya school is

65

Sanskrit: hasta-nistha-karanatva-nirupaka-brahmana-nistha-
sampradanatva-nirupaka-dhana-nistha-karmatva-nirupaka-danakriya-
anukula-krti-vat-ramah. (7)
English: Rama has the agent-hood of an activity described by the
instrument-ness in the hand, the recipient-ness in a Brahmin and the
object-hood in the money.

Figure @ shows the rendering of this expression as a conceptual

nirGpita (14)
(describing)

anukdlata (15) dana (13)
(favorability) (action of giving)

nirlipaka (12) nirCipaka (4)
(described by) (described by)

krti (17) sampradanatva (7) karmatva (11) karanatva (3)
(action) (recepient-ness) (object-hood) (instrument-ness)

graph.

vat (16)
(possessing)

nirlipaka (8)
(described by)

vat (18)
(possessing)

nistha (6)
(residing in)

nistha (10)
(residing in)

nistha (2)
(residing in)

rémah (19) brahmana (5) dhana (9) hasta (1)
(Rama) (Brahmin) (money) (hand)

Figure 5.8: Conceptual Graph with position information for (7)

An NNE: samavayasambandha-avacchinna-gandhatva-avacchinna-

gandha-nistha-adheyata-nirupita-adhikaranata™ vat-prthivi. (8)

Now let us look at the expression (8) where NN Expression is used

66

to define the “Earth'. “Earth', according to the Indian school of on-
tology, is an object which has a characteristic property of having
smell which differentiates it from the other objects. The NN Expres-
sion (8) expresses this precisely. In this definition the components
avacchinna “delimited by', nistha “resident in', vat “possessing' and
nirupita “determining' denote conceptual relations while the com-
ponents gandhatva “smell-ness', gandha “smell', adhikaranata “locus-
hood' and adheyata “superstratum-ness' denote the concepts. The
conceptual graph corresponding to this structure is shown in Figure -
@. The dotted lines show the ontological reality viz. that smell-ness
is the inherent property of the smell and that the earth has smell as
its characteristic property. The thick lines show the connection be-
tween the concepts through the conceptual relations expressed in the
NN Expression (1). Note here the positions of various concepts in
the diagram. Just like a Naiyayika, who is a realist, we also tried our
best to represent the hierarchy of concepts following the ontological
status of them. This aspect of the diagram is very well prominent in
the diagrams of Jha(l6). We want to preserve this aspect. The NN
Expressions are used to describe the situations or events as well, in
addition to the cognitive structures. For example, the fact “a potis on
the ground' is described as

Sanskrit: ghata-nistha-adheyata-nirupita-adhikaranata”vat bhutalam.
©)

English: The ground which has substratum-ness determined by the
superstratum-ness in a pot.

where one cognises the situation with ground as the chief qualifi-

67

A (1)

arferameorT (5) T (3)

yfeldt (6)

Figure 5.9: Conceptual Graph for (1)

cand in the cognitiona. This is represented diagrammatically in Fig-

ure p.10. On the other hand if one cognises it with the pot as the chief

HE (1) aIfea o (3)
T (2) qeF (4)

Figure 5.10: Conceptual graph corresponding to (9)

qualificanda, then the cognition is described as
Sanskrit: bhutala-nistha-adhikaranata-nirupita-adheyata™van ghatah.

(10)

2 ghatavadbhiutalam ‘pot-possessing-ground’.
3bhitale ghatah ‘pot on the ground’

68

English: The pot which has superstratum-ness delimited by the

substratum-ness resident in the ground.

Figure p.11 gives the rendering of this expression as a Conceptual

Graph. Note that the relations van “possessing' and nistha “resident

in' are inverse of each other.

qael (1) T (3)
3ffei o (2) e (4)

Figure 5.11: Conceptual graph corresponding to (10)

5.4 Compressed CGs

The CGs can also be drawn with relations represented by edges rather
than the oval nodes. This way the graphs would be compact. The
edges then will be labelled.

For instance, “Cat (is) on Mat' is represented as in Figure p.12

On (Relation) >

Mat (Concept2)

Cat (Conceptl)

Figure 5.12: An instance of SCL graph

Figure p.13 gives the rendering of the expression (10) as a compressed

graph.
These graphs are very close to the representation of Jha(l6) and

Kulkarni(20). The only major difference being, while Jha and Kulka-

69

qaet (1) T (3)

e

IG1:) g | 52 @)

AT ERRUTET (2)

Figure 5.13: SCL graph corresponding to (10)

rni used edges with different heads to represent different types of
relations, here we label the edges.

In what follows we now explain the Context Free Grammar that
transforms a Constituency-Parsed NNEs into a CGs and Compressed

CGs.

5.5 Grammar of NN Expressions

The constituency parsed NNE being a well-formed structure follow-
ing the Context Free Grammar(CFG), we decided to write a CFG to
parse this structure and then transform it into a CG. Now we define
the grammar G for an NN Expression below.

G = (N,T,P,NNE), where

N: Set of non-terminal symbols viz. compound_concept, com-
pound_relation, concept_term and relation_term.

T Set of terminal symbols viz. relation and concept.

NNE: The start symbol.

P: Production rules described in Table-El]. The concepts are the

70

NNE : compound concept

compound_ concept : ‘(’ compound_ relation ‘—’ concept_ term ‘)’
compound__ relation i ‘(" concept_ term ‘—’ relation_ term ‘)’
concept__term ’ concept
| NNE
relation term ’ relation

Y

Table 5.1: Production rules

nouns, relational abstract expressions and the negation functor and
the terms derived with tva suffix from nouns. Relations are the sen-
tence forming operators nistha and avacchinna and the conditioning
operator nirupita along with their inverse relations viz. vrtti / asraya,

avacchedaka and nirupaka, respectively.

5.6 NN Expressions to Conceptual
Graphs

In a CG, the concepts are represented by boxes, relations by the ovals,
and the relations connect the concepts. In NN, except the paryapti
relation, which is used in connection with numbers, all other relations
are binary. Thus every relation node needs two relata. Thus, in order
to draw a CG corresponding to an NN relation, we need

1. Node labels,

2. Node types and

3. the two relata for every relation.

71

The attribute grammar defining the synthesized attributes for draw-
ing the CG is defined in Table—.

An attribute grammar is a context-free grammar extended with at-
tributes, semantic rules and conditions. Synthesized attribute is an
attribute that gets its values from the values of attributes of the chil-
dren. It helps us in understanding the CFG and the attributes con-

nected with that in a better way.

NNE : compound concept
Thead = |.head

compound__concept : ‘(’ compound_ relation ‘—’ concept_ term ‘)’
1.head = concept_ term.head
establish a link between the head of the
compound__ relation to the head of the concept_term

compound_ relation | ‘(’ concept_term ‘—’ relation_ term ‘)’
T.head = relation term.head
establish a relation between the head of the
concept_term to the head of the relation term

concept__term : concept
T.head = |.position
draw a concept node
| NNE
T head = |.head

relation term : relation
T.head = |.position
draw a relation node
)

Table 5.2: Production rules with attributes

The node labels and the node types correspond to the intrinsic at-

tributes of the terminal nodes concept and relation, which are avail-

72

able from the lexer. The two rules in the grammar above correspond-

ing to compound_ relation and compound__concept provide the links be-

tween a relation and a concept term.

5.6.1 An illustration

We work out an example illustrating the working of this grammar.

Consider the fragment of the NNE

<<gandha-nistha>-adheyata>

The constituency parse of this following the grammar in Table @ is

shown in Figure

5.14

. Since no significant semantic action is associ-

ated with the concept_term node and at the nodes returned by the

lexer, we collapse these nodes as in Figure p.15

more compact.

to make the graph

In order to generate a graph from this parse tree, we associate a

“concept-structure' with each concept and a “relation-structure' with

each relation. Figure

5.16

explains this.

Various stages in Parsing are shown in the Figure

5.2(0 below -

In the level of Fig -

5.17

5.17,p.18, .19 and

with the given NNE shown through this parse

tree, all the necessary information like position, label and where the

relation term nistha is connected to its left. But it is still not known

where it connected to its right.

In the level of Fig - p.

18 shown through the parse tree, concept node

acquires the "head' position from its child as shown in the highlighted

part.

In the level of Fig -

b.

19 shown through the parse tree, relation node

inherits the “head' position as shown in the highlighted part.

73

NNE|

|,
1

‘ Compound_Concept ‘

Compound_Relation |

Concept_term |

|:C0ncept7term:| |.Relfterm\|

‘ concept | | relationj
<| [<| gandha |-| (nistha)|>| - adheyata| > |

Figure 5.14: Constituency parse corresponding to the grammar

’ Compound__ Concept ‘

’ Compound_ Relation ‘ ’ adheyata ‘

’ gandha ‘ ’ nistha ‘

Figure 5.15: Compact parse - 1

74

’ Compound__Concept ‘

’ Compound_ Relation ‘ concept
|

adheyata

relation

Figure 5.16: Compact parse with position information

[Position =1 Position = 2 [Position =3] T~

Label = gandha| | Label = nistha || Label = adheyata adheyata
Left = 1
R?ght =9 gandha nistha

Figure 5.17: Compact parse

Pos=3
Label = adheyata

'gandha | (nigtha) 'adheyata |
(Pos =1 Pos=2 'Pos=3
Label = gandha Label = nistha Label = 3dheyata
— Left=1 e ——
Right=?

Figure 5.18: concept node acquires the ‘head’ position from child

5

Pas=3
Label = adheyata

/Pos =3
Label = adheyata

'gandha | ':;'_‘_isth'a}' |adheyata \
Pos=1 | Pos=2 Pos=3 |
Label = gandha Label = nistha Label = adheyata
Left=1 i

Right =2

Figure 5.19: relation term inherits the ‘head’ position

r Wi ~

‘ Pos=3
| | Label = adheyata

(Pos=3
Label = 4dheyata

\ gandha_\ n|stha \/Edheyati |
Pos = 1) Pos=2 | Pos=3
Label = gandha Label = nistha Label = adheyata
Left=1 g
Right = 3

Figure 5.20: relation node inherits the position of 2"¢ relata

76

In the level of Fig - .20 shown through the parse tree, the relation

node inherits the position of 2"? relata. It is now known that the re-
lation term nistha is connected to the concept term adheyata which is
there to its right.

Once every relation node gets its right node position filled in, we
draw the CG.

We noticed that NN has a canonical structure for expressing the
cognitive structure as well as for describing the physical reality.
This structure is used only when there is an ambiguity. Hence
in a cognitive structure, only that part of the expression which
is ambiguous is expanded. Thus typically the NN Expressions
are heterogeneous mixtures of the expressions with unspecified
relations and the NN Expressions. So there is a need to handle
suchheterogeneous structures as well. For example, the expression
sadhyabhavadhikarananirupitavastu contains an NN term nirupita
and the remaining part of the expression is NN expression with un-
specified relations with 3 components sadhya, abhava and adhikarana.
The grammar in Table - @, is extended further to handle these cases
as well. In such cases, we establish a relation between the concept

nodes, but leave the relation unspecified.

NNE : compoundC
compoundC : '<' compoundR '-' concept_term '>'

| '<' concept_term '-' concept_term '>'
compoundR : '<' concept_term '-' rel term '>'

7

concept_term : NNE

| concept

rel term : relation
5

Now the graphical representation for the previous sentence follow-

ing the extended grammar will be as shown in Figure - p.21.

abhava
(absence) (3)

adhikarana
(substratum) (5)

sadhya
(Probandum) (1)

nirtipita
(determined by) (6)

vastu

(object) (7)

Figure 5.21: CG generated by modified grammar

78

Chapter 6
Nyayacitradipika

All the modules discussed earlier have been packaged together in the
form of a software Nyayacitradipika. The system is available online
at http:/ /sanskrit.uohyd.ac.in/scl --> tools --> Nyayacitradipika. The
segmenter, constituency parser and the graph renderer are at the back
end. The front end user interface has two options - one with pre-
tested examples and the other one that allows any random NNE text.
The interface first calls the segmenter and shows the segmented out-
put. Next the user can choose to parse this segmented string. The
interactive user interface facilitates user to select the correct anuyogin
in the given context. Once all the anuyogins have been selected, one
can generate the CG or a compressed CG.

We illustrate this process with one example.

79

RIS FATEHT-Samsadhant

A tool o analyse Navya-Nyaya Expressions Department of Sanskrit Studies, University of Hyderabad.

We present a semi-automatic computational tool to represent a Navya-Nyaya Expressions(NNE) through Conceptual Graphs of Sowa.
This tool consists of a doemain specific Segmenter, a semi-automatic constituency Parser, Graph renderer and a type-identifier.

1) Segmenter (J5=Bf<@T) splits tha given NNE into components

2) Parser (3aafufia) rovides an ian user interface for interactive constitutional parsing.

3) Graph renderer (‘f%l’alﬁgl?ﬂ) renders the Conceptual Graph and Compressed Conceptual Graph.
4) Compound-Type-identifier (¥TH-UhR-3rf¥aT) identifies the type of tha compound of an NNE.

‘ Selected Examples from Navva:Nvava lexts: j

@ 2012-16 Arjuna S.R. &
Valid XHTML 1.0 Transitional Flag Counter since September 2012

Figure 6.1: Homepage of Nyayacitradipika with two modes

This is the interface of the Nyayacitradipika. We can select either op-
tion from “selected examples from NN texts' and “my own example'
and proceed further. We must choose an example in pre-tested ex-
amples and select a segmenter - SCL segmenter or Sanskrit Heritage

Reader for segmentation.

80

IE DT AaTEH-Samsadhant

A Segmenter for Navya-Nyaya Expressions Department of Sanskrit Studies, University of Hyderabad.

To see the sandhi rule, place the cursor on the hyphen -
"Parse”, will take you to the interactive interface for constituency parseing.
AT (e T eed T oo e 8T
1
I8 379 o T eI - 3T e - T8 -8 - 31T - oo - af U avg,

Parse

© 2012-16 Arjuna S.R._ &

falid XHTML 1.0 Transitional Flag Counter

Figure 6.2: Segmented output from SCL segmenter

This interface shows the segmented output of prthivi lakshana from
SCL segmenter. We can proceed for the constituency parsing by

clicking the “Parse' button.

81

IfECIUGT AaTeH-Samsadhant

A Segmenter for Navya-Nyaya Expressions Depariment of Sanskrit Studies, University of Hyderabad.

Semi-Automatic Parser

Columns in correspond to the relation terms
The anuyogin (373) of a relation is a to its right.
To get the parse, manually select the anuyogin for each relation term.
TaRed| e Ty '@ sEfee || s et | Frof] EGdl Bl
1 2 3|4 5 6| 7 8 9 10 1 |12
- 9:3,4,6,8,10,12|3m:4] - |sm6,8,1012] - Jogs] - [3m10 - emag] -

© 2012.16 Arjuna S.R. &

Valid XHTML 1.0 Transitional Flag Counter

Figure 6.3: user interface to select anuyogin

This interface is to select the anuyogin of the relations. The interactive
user interface facilitates user to select the correct anuyogin in the given

context.

82

RISl HAEAT-Samsadhant

A Segmenter for Navya-Nyaya Expressions Department of Sanskrit Studies, University of Hyderabad.

Semi-Automatic Parser

Columns in correspond to the relation terms
The anuyogin (37) of a relation is a to its right.
To get the parse, manually select the anuyogin for each relation term.
AR | srafens | Ty | e srafes|ra] s | smde | Frofta aq =g
1 2 314 5 67 8 9 10 1 |12
- g8 |ag4| - | 398 | - |3g8] - [3m10 - Fg12| -

Constituency parse: << <<<<THARITE-8-37d 05 > - < <7l -37d 0571 > -< <TT- (18> -SRI > > > - Freef s> -2 aaurar> ad>-avg>
View Conceptual Graph
View Compressed Conceptual Graph
Compound Type-identifier
Try Another

© 201216 Arjuna S.R. &

Valid XHTML 1.0 Transitional Flag Counter

Figure 6.4: Completely disambiguated NNE

This interface is after choosing the anuyogins of all the relations. We
can proceed for Conceptual Graph by clicking on “View Concep-
tual Graph' and for Compressed Conceptual Graph by clicking “View
Compressed Conceptual Graph'. We can proceed for Type-identifier
also by clicking on *Compound Type-indentifier".

83

~AfRESIUET HHTe-Samsadhant

A Segmenter for Navya-Nyaya Expressions Department of Sanskrit Studies, University of Hyderabad.

<<< << T AT ST D> -< < e - ST < T8> -SRIl >>- P vt >~ feaoret>-arcl>-aeg>

Figure 6.5: Conceptual Graph (CG) of the selected NNE

This interface shows the Conceptual Graph. We have to follow the

number along with its relation to read the graph.

84

R UeT dATE-Samsadhant

A Segmenter for Navya-Nydya Expressions Department of Sanskiit Studies, University of Hyderabad.

Valid XHTML 1.0 Transitional Flag Gounter

Figure 6.6: Compressed CG of the selected NNE

This interface shows the Compressed Conceptual Graph. Here also

we have to follow the number to read the graph.

85

RN H-Samsadhar

A Segmenter for Navya:Nyaya Expressions Depariment of Sanskt Studes, Uniersiy of Hyderabad

RT3 T TSR K K- T3-SRk - ZpRAFpR

Figure 6.7: Identified compound types of the selected NNE

This interface shows the identified compound types of the selected

NNE.

86

Chapter 7

Conclusion

This automatic conversion of NN Expressions into a Conceptual
Graph is the first step towards understanding the complex and long
NN Expressions. This rendering into a CG should ease the process

of understanding the semantics associated with these expressions.

The contributions of this tool from the Sanskrit Studies perspective
are,
* This will be a pedagogical tool for Sanskrit Studies.

In the traditional learning the students are trained to con-
ceptualise the NN expressions, when teachers explain the struc-
ture of the NNE. But the students not trained in gurukula sys-
tem, since do not have good exposure to the traditional method
of learning, find it difficult to visualise the underlying struc-
ture of NNEs. For such students this will be an aid to under-
stand NNE effectively. Till now eminent teachers of NN such
as Prof. Vasishtha Narayana Jha, Prof. Tirumala Kulakarni, to

name a few, have been using the diagrams on board, to explain

87

the NNEs. But now with the availbility of these tools, students
and teachers both will be benefited.

¢ For non-Sanskrit modern scholars, this will be a bridge to un-
derstand NN.

The non-Sanskrit modern scholars from Language Science,
Mathematics and Computer Science can easily understand the
NN through this tool.

* Easier to understand Predicate Logic, because CGs can be con-
verted into Predicate Logic.

As mentioned in Chapter 5.2, a CG can be converted into
Predicate Logic. This tool can convert an NNE to CG automat-
ically from which one can convert it into Predicate Logic for

further semantic processing.

Future directions
* Nyayacitradipika has to be enhanced further for paraphrase
generation.
¢ We can look forward to understand the semantics of the tech-
nical terms in order to build an inference engine.
¢ Constituency parsing is semi-automatic. We can look for more

cues to make it fully automatic.

88

Appendices

89

A - Table of Semantic classifications

Semantic classifications of Sanskrit compounds

TSI dcged
1 | ord-gE9e- S Al |1 | goHTGQey T1
2 | -SR-S A2 |2 | fEdETacged T2
3 | [egsid-SreaE e A3 |3 | qdEacqes T3
4 | GEAYEUE-TRRYS-IENE | A4 | 4 | Sqefidcges T4
5 | TR USEERE, A5 |5 | q=Eideged T5
6 | GEAYEYE-RANIE-EEME | A6 | 6 | TSIAgeY T6
7 | - EENSRNTE- T E | A7 | 7 | Seeiaeey 7

TgAle 8 | Aekccqe Tn
1 | fadeneegsite Bs2 |9 | wife-degew Tp
2 | gl Bs3 | 10 | F-acges Tk
3 | IqaEEHiE Bsd | 11 | ¥ifdi-cieges Tg
4 | TaEEA Bs5 | 12 | afearetey Tdt
5 | wseEEAR Bs6 | 13 | STRUEf] Tdu
6 | aEEeEeEAiR Bs7 | 14 | GUERE] Tds
7 | fovaras-agaie Bsd |15 | S99 U
8 | GEANEUE-agAlR Bss | 16 | fEdiade-acgey U2
9 | STHMYEYE-agAR Bsu |17 | qaiEUe-aeged U3
10 | TETUTeaH-agaie Bsp | 18 | FgeAidqE-acges U4
11 | TeUTaaS-TgHite Bsg | 19 | TERIIU9G-AcqeY U5
12 | OgRYe-AHul-Tgate Bvs |20 | GERIYUE-dgeN U7
13 | GEYHE- AT Tg BvS |21 | TGRS Tm
14 | Sie-SATEOT-TgHIE Bvp |22 | Sgqe-acged Tb

91

15 | STHTHYEYE- AT TG BvU FHINE
16 | oLl Bsmn | 1 | fRiNU-g@ue-#aama | K1
17 | Sg9e-Tgaie Bb |2 | fRNu-IwEE-FHIE | K2
T 3 | frRu-vEge-FeaRE | K3
1 | SOEEEE Di |4 |IWHF-99E-FHURE | K4
2 | GAER-EE Ds |5 |I9AM-STREE-FHGRE | K5
3 | wwRY-EE E 6 | STEINUMYEUE-FHaRE | K6
I (others) 7 | GRTEAETE-RRaRE | K7
1 | fawf d 8 | AmIESINEIRE | Km
2 | hAS-GHH -

92

B - Relation terms along with the possible

type of the compound

Head of the first component | Compound type
B K1
grd K1

EISER K1
T K1
CEIE K1
HI=STh K1
T T6
h Tds
& Tds

| Tds
dX Tds
RE| Tds
9z Tds
a4 Tds
3E Tds
=o| Tds
Rl Tds
2d Tds
e Tds
fera K1
HTHE K1

93

S K1

5 0| T5
ATES K1
I K1
ATHTR K1
EIpET K1
CACUICY K1
EEISED K1
fo=RINUTR K1
SEALEA K1
dait K1
AR K1
EERED K1
EEIRED K1
FEE K1
HUTE K1
ik K1
qETeT® K1
I K1
S| BEauip| K1
BIRRIGIED K1
AR K1
AMAAT® K1
IMIRATR K1
ANRLTTAT® K1

94

EARKIC) K1
HRUTATR K1
EEUSGIED K1
[EEIRUIGIED K1
THRRAT K1
HE AT K1
HaR T K1
LRI K1
ERIRRIED K1
FEIAH K1
FEIUTATR K1
gradts K1
Head of the second component | Compound type
o8 T7
grd T7
ferefia T3
[GiCs T6
At T3
ANTTSGH T6
I T6
e T6
el T5
e T3
FHITERITH, T6
SHREED Bs6

95

5 0| T5
STh T7
e Bs6
T K4
&y T6
RE3ED Bs6
s Bs6
gd® Bs6
BIRRIIHES Bs6
ST Bs6
AMeTH Bs6
SIRIEE Bs6
SATHTR Bs6
FEh Bs6
EIRMED Bs6
EEISES Bs6
[EESLES Bs6
EEALED Bs6
dait Bs6
Gan Bs6
IEERES Bs6
EEIEED Bs6
(e Bs6
[ISRIE Bs6
gras Bs6

96

AR TR Bs6
aﬁ?ﬁﬁ'l?rﬁ Bs6
ST Bs6
SSICGIED Bs6
ANRLTTAT® Bs6
FEAF Bs6
EALUIRIED Bs6
[EEISGIED Bs6
[ERENGIED Bs6
EEALGIE Bs6
HE AT Bs6
HaRTE Bs6
ELRGIE Bs6
foaT® Bs6
SEdrh Bs6
T Bs6
gradi® Bs6

Table 2: Relation terms along with the possible type of

the compound

97

C - Programs of all the tools

We have enclosed all the programs here.

Segmenter program

The program of segmenter is written in Perl language.

#!/usr/bin/perl

my $myPATH="/home/arjun/scl";

use GDBM_File;

tie(%LEX1,GDBM File,"$myPATH/NN/segmenter/S1.dbm",
GDBM_READER,0644) || die "can't open S1.dbm ";
tie(%LEX2,GDBM_File, "$myPATH/NN/segmenter/S2.dbm",
GDBM_READER,0644) || die "can't open S2.dbm ";
tie(%LEX3,GDBM File,"$myPATH/NN/segmenter/S3.dbm",
GDBM_READER,0644) || die "can't open S3.dbm ";
tie(%LEX4,GDBM_File, "$myPATH/NN/segmenter/S4.dbm",
GDBM_READER,0644) || die "can't open S4.dbm ";

require "$myPATH/NN/segmenter/nyAya_words.pl";
$Max Word Size=25;

while($in = <STDIN>){

chomp ($in) ;
$found = "";
%SPLIT = ();

98

%SPLIT_CHECKED = ();

($ans, $found) split("#", &split_recursive_sandhi($in,0,""));

$ans = &prioritise($ans);

@ans = split("/",$ans);

$ans_found = 0;

foreach $a (@ans) {

print $a,"\n";

$ans_found++;

}

if ('$ans_found) { print "No answer found \n";}

elsif ($ans_found == 1) { print "One answer found \n";}

else { print "$ans_found answers found\n";}

}

sub split_recursive_sandhi{

my ($in, $absolute_position,$found) = @_;

nmy ($wrdl, $wrd2,$i,$k,$final ans,$ans,0t,$t,$len,
$pUrva, $str2Bmatched, $uttara,$f1dl,$f1d2,$£f143,
@ans,$local_found, $m,$position,
$local_ans,$lex,$tmp,$wrd2 position,$l);
$len = length($in);
$final ans = "";
if ($len < $Max _Word Size) { $i = $len;}
else {$i = $Max_Word_Size;}

99

$max window_size = 4;

while($i>0) {

$local found = $found;

for ($k=%$max window_size; $k>=1; $k--){
if (i + $k < $len) {

$local ans = "";

if ($debug) {print "k = $k\n";}

$in =~ /7C.A{$iH) (. {$k}) (.%)$/;

$pUrva = $1;

$str2Bmatched = $2;

$uttara = $3;

$lex = "LEX".$k;

if (${$lex}{$str2Bmatched}) {
@ans = split(/#/,${$lex}{$str2Bmatched});
for ($m = 0; $m <= $#ans; $m++){
if ($debug) { print "sandhi Rule: $ans[$m]\n";}
($£1d1,$£f1d2,$f1d3) = split(/,/,$ans[$m]);
$tmp=%in;
$tmp =~ s/ $pUrva$str2Bmatched$uttara$/$pUrva$fldl $f1d2futtara/;
($wrdl, $wrd2) = split(/ /,$tmp);
$position = $absolute_position+length($pUrva).",".$£f1d3;
$wrd2_position = $absolute_position+length

($pUrva) +length($str2Bmatched) -length($£1d2) +1;

100

if (('&split_boundary_pos($position,$found)
&& '&from_non_pUrvapaxa_list ($wrd2)
&& '&from_non_pUrvapaxa_list($wrdl))){
if ((length($wrdl) < $Max_Word_Size)
&& '$MO_CHECKED{$wrd1}){
if ($debug) {print "Calling morph for $wrdi\n";}
$MO{$wrd1} = &get_morph_ana($wrdl);
if ($debug) {print "$MO{$wrdi}\n";}
$MO_CHECKED{$wrdi} = 1;
}
if ((length($wrd2) < $Max_Word_Size)
&& !'$MO_CHECKED{$wrd2}){
if ($debug) {print "Calling morph for $wrd2\n";}
$MO{$wrd2} = &get_morph_ana($wrd2);
if ($debug) {print "$MO{$wrd2}\n";}
$MO_CHECKED{$wrd2} = 1;
}
if ($MO{$wrd1} && $MO{$wrd2}) {

$local ans .= "/".$wrdl."{$£f1d3}".Swrd2;
if ($position ne "") {

$local found = &add_position($local_found,$position);
}

}
elsif ($MO{$wrd1}) {

if (!$SPLIT_CHECKED{$wrd2}) {

101

($ans, $sub_found) = split(/#/,

&split_recursive_sandhi ($wrd2,$wrd2_ position-1,$found));

} elsif ($SPLIT{$wrd2})
{ $ans = $SPLIT{$wrd2};}

else {$ans = "";}

if ($ans ne "") {
if ($position ne "") {

$local found =

&add_position($local found,$position);
}
@sub_found = split(/#/,$sub_found);
foreach $1 (@sub_found) {

if($1 ne ") {

$local found =

&add_position($local_found,$1);

$ans =~ s/\/\//\//g;
$ans =~ s/"\///g;
Ot = split("/",$ans);
foreach $t (@t) {

$local _ans .= "/".$wrdl."{$£1d3}".$t;

102

}
if($local ans) {

$final ans .= "/".$local_ans;

$found = $local found;
$found =~ s/"#//g;
$i-—;

$SPLIT{$in} = $final ans;
$SPLIT CHECKED{$in} = 1;
$final_ans =~ s/\/\//\//g;
$final_ans =~ s/"\///g;

$final ans."#".$found;
}

1;

sub get_morph_ana{

my ($wordl) = @_;

my ($ans) ;

system("$myPATH/NN/segmenter/client_splitter.sh

103

$wordl | grep . | grep -v '*'> /tmp/SKT_TEMP/tt");
if(-s "/tmp/SKT_TEMP/tt") { $ans = 1;} else { $ans

system("rm /tmp/SKT_TEMP/tt");

return $ans;

}

1;

sub split_boundary_pos{
my ($start,$found) = @_;
my (@found, $£) ;

@found = split(/#/,$found);

foreach $f (@found) {
if ($f eq $start) {

return 1;}

sub add_position {

my ($str,$pos) = @_;
$str =~ s/\-/:/g;
$pos =~ s/\-/:/g;
$str =~ s/\+/;/g;
$pos =~ s/\+/;/g;

if (($str !~ /“$pos#/) &&
($str !~ /~$pos$/) &&
($str !~ /#$pos#/) &&

($str '~ /#$pos$/)){

104

0;%}

$str;
+
1

$str .= "#".$pos;

$str =~ s/:/-/g;
$str =~ s/;/+/g;

sub from non_pUrvapaxa_list {

my ($w) = @_;

if($w eq "ava-") { return 1;}

if($w eq "avacCinnA-") { return 1;}
if($w eq "anu-") { return 1;}

if ($w eq "Cexa-") { return 1;}

if ($w eq "Cexaka-") { return 1;}

if ($w eq "CexakawA-") { return 1;}
if ($w eq "Cexakawva-") { return 1;}
if ($w eq "Cexya-") { return 1;}
if($w eq "CinnA-") { return 1;}
if($w eq "nirUpiwA-") { return 1;%}
if($w eq "niRTA-") { return 1;}
if($w eq "nis-") { return 1;}

if ($w eq "paryApwA-") { return 1;}
if ($w eq "pra-") { return 1;}

if ($w eq "prawiyogikA-") { return 1;}
if($w eq "rUpiwa-") { return 1;}
if($w eq "SA1I-") { return 1;}

105

if ($w eq "Taka-") { return 1;}

if ($w eq "TakA-") { return 1;}

The viSeRaNa (BARiwa puMlinga, undergoes puMswva
in bahuvrIhi and karmaXAraya compounds
if ($w eq "viSeRaNA-") { return 1;3}

if ($w =~ /"akawA/) { return 1;}

if ($w =~ /"araN/) { return 1;}

if ($w =~ /~avaw/) { return 1;}

if($w =~ /"AraN/) { return 1;}

if($w =~ /~Cinna/) { return 1;}

if ($w =~ /~“Cexaka/) { return 1;}

if ($w =~ /"CexakI/) { return 1;}

if ($w =~ /"iRyakawA/) { return 1;}

if ($w =~ /"kawhA/) { return 1;}

if($w =~ /"raN/) { return 1;}

return O;

b

sub prioritise{
my ($ans) = @_;

my ($low,$high,@ans, $oneans, $word, @words, $count , $max_count,$i, @ANS) ;

@ans = split("/",$ans);
$max count = 0;

foreach $oneans (Q@ans) {
$curr_ans = $oneans;

$oneans =~ s/[1[a-zA-Z]+[1*;.%x//;

106

Qwords = split(/ /,$oneans);

$count 0;

foreach $word (@words) {

if ($NYAYA words{$word}) { $count++;}
}

$ANS [$count] .= "/". $curr_ans;

if ($max_count < $count) { $max_count = $count;}
}
$ans = "";
foreach ($i=%$max count; $i >= 0 ; $i--){
if (BANS[$i] ne "") { $ans .= "/". $ANS[$il;}
}
$ans =~ s/\/\/+/\//g;
$ans =~ s/"\///;
$ans;
}
1

107

Constituency Parser program

We have written the programs in Lex(Lexer generator) and Yacc(yet

Another Compiler Compiler).
Lex program

i

#include "nneparse.tab.h"

h}

Joption noinput

Joption nounput

Yo
niRTa|vqwwi|avacCinna|nirUpiwa|nirUpaka|avacCexaka |
ASraya|SA1[iI] |vaw|vawI|vawyaH|vAn|ka{strcpy
(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
[*-\n]+ {strcpy(yylval.nodeinfo.token,yytext) ;return concept;}
\n { return '\n';}

\-{ return '-';}

YA

Yacc program

Junion {

struct node{

char token[1000];

} nodeinfo;

}

W

#include <stdlib.h>

108

#include <stdio.h>

#include <string.h>

struct termstruct{
char word[1000];
char type[10];

char pratiyogin[10];
char anuyogin[100];
} terminfo[100];

int counter,i,relation_found;
char tmp[100];

extern int debug;

int yylex();
int yyerror();

h}

%token <nodeinfo> sambanXaH

Jtoken <nodeinfo> concept

%itype <nodeinfo> terms
%itype <nodeinfo> TC
Jitype <nodeinfo> TR
Y

examples: example

| examples example

109

example: terms '\n' {
for(i=1;i<counter;i++){
printf ("@%s\t",terminfo[i] .type);
printf ("%s\t",terminfo[i] .word) ;
printf ("%d\t",1i);
//if (Istrcmp(terminfo[i] .type,"relation")){
if (strcmp(terminfo[i] .pratiyogin,"")){
printf ("%s\t",terminfo[i] .pratiyogin);
} else { printf("-\t");}
//if (strcmp(terminfo[i] .type,"relation")){
if (strcmp(terminfo[i] .anuyogin,"")){
printf ("%s\n",terminfo[i] .anuyogin+1) ;
// first char is ',', to ignore it,
we start printing from +1 position
} else { printf("-\n");}
}

I

terms: terms '-' TR

| terms '-' TC

| TC
TC: concept { strcpy(terminfo[counter].word,$1.token);
strcpy(terminfo[counter] .type, "concept") ;

sprintf (tmp,"%d",counter) ;

for(i=1;i<counter;i++){

110

if (!strcmp(terminfo[i] . type,"relation")){
strcat(terminfo[i] .anuyogin,",");

strcat(terminfo[i] .anuyogin,tmp);

}
}
if (!strcmp(terminfo[counter-1].type, "concept")) {
sprintf (tmp,"%d",counter-1);
strcat (terminfo[counter-1] .pratiyogin,tmp);
}
counter++;
}
TR: sambanXaH {

Tolh

strcpy(terminfo[counter] .word, $1.token) ;
strcpy (terminfo[counter] .type, "relation");
sprintf (tmp,"%d",counter-1);

strcat (terminfo[counter] .pratiyogin,tmp) ;
counter++;

3

#include <stdio.h>

#include <stdlib.h>

int debug;

int yyerror(char *s) {

fprintf (stderr,"%s\n",s);

111

return (0);

int main(int argc, char *argv[]){
counter = 1;
for(i=1;i<100;i++){
strcpy(terminfo[i] .anuyogin,"");
strcpy(terminfo[i] .pratiyogin,"");
}
debug = 0;
if(argc > 1) {
if (index(argv[1],'D')) debug=1;
}
yyparse() ;

return 1;

112

Graph renderer program
This program is also written in Lex and Yacc.

Lex program

hi

#include "nne2diagram.tab.h"

int type;

h}

ioption noinput

Joption nounput

%x LEVEL

o

niRTa {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
vqwwi {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
avacCinna {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
nirUpiwa {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;?}
nirUpaka {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
avacCexaka {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;}
ASraya {strcpy(yylval.nodeinfo.token,yytext) ;return sambanXaH;?}
SA1[iI] |vawl|vawl|vawyaH|vAn
{strcpy(yylval.nodeinfo.token, "vaw") ;return sambanXaH;}

ka {strcpy(yylval.nodeinfo.token,"ka");return sambanXaHl;}

aBexa {strcpy(yylval.nodeinfo.token, "aBexa") ;return sambanXaH;}
[a-zA-Z] +wva

{strcpy(yylval.nodeinfo.token,yytext) ;yylval.nodeinfo.level=3;
return concept;}

[a-zA-Z]+wA

113

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=3;

return concept;}

[a-zA-Z]+

{strcpy(yylval.nodeinfo.token,yytext) ;yylval.nodeinfo.level=1;

return concept;}

niRTa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

vqwwi:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

avacCinna:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

nirUpiwa:/[0-9]

{yytext [yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

nirUpaka:/[0-9]

{yytext [yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

avacCexaka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

ASraya:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext) ;

114

type=sambanXaH ; BEGIN LEVEL;}

type=sambanXaH ;BEGIN LEVEL;}

type=sambanXaH ;BEGIN LEVEL;}

type=sambanXaH ;BEGIN LEVEL;}

type=sambanXaH ;BEGIN LEVEL;}

type=sambanXaH ;BEGIN LEVEL;}

type=sambanXaH;BEGIN LEVEL; }

SA1[iI]:|vaw: |vawl: |vawyaH: |vAn:/[0-9]

{yytext [yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token, "vaw"); type=sambanXaH ;BEGIN LEVEL;}
ka:/[0-9]

{yytext [yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token, "ka"); type=sambanXaH ;BEGIN LEVEL;}
aBexa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token, "aBexa"); type=sambanXaH ;BEGIN LEVEL;}

[a-zA-Z]+wva:/[0-9]

{yytext [yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}
[a-zA-Z]+wA:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}
[a-zA-Z]+:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}
<LEVEL>[0-9]+

{yylval.nodeinfo.level=atoi(yytext); BEGIN INITIAL; return type;}
\n { return '\n';}

\<{ return '<';}

\>{ return '>';}

\-{ return '-';}

o

115

Yacc program

Junion {

struct node{

char token[1000];
int level;

int next_level;
int head;

} nodeinfo;

}

hi

#include <stdlib.h>
#include <stdio.h>

#include <string.h>

struct termstruct{
char word[1000];
char typel[10];

int level;

} terminfo[100];

struct relstruct{
char relname[100];
int from;
int to;
int level;

} relinfo[200];

116

int T _counter;

int rel counter;

int i,j,k,found,min,max;
extern int debug, cg_or_real;
extern int getmin(), getmax();
extern char level[10][100];
int yylex();

int yyerror();

h}

%stoken <nodeinfo> sambanXaH

Jtoken <nodeinfo> concept

%itype <nodeinfo> NNE
%itype <nodeinfo> compoundC
Jitype <nodeinfo> compoundR
htype <nodeinfo> concept_term
%itype <nodeinfo> rel term
o
examples: example

| examples example

example: NNE '\n' {

printf ("@digraph @G\n{\n");

printf ("@labelfloat=@true;\n");

max = 1;

for(i=1;i<=T_counter;i++){

117

j = terminfo[i].level;
if (j > max) max = j;
sprintf (level[j],"%s
@Node%d",level[j],i);
}
for(i=1;i<T_counter;i++){
printf ("@Node%d\t [@label=\"Ys
(hA)\" ",i,terminfoli] .word,i);
printf ("@fontcolor=\"Qred\"
@shape = \"@box\"]\n");
}
for(i=1;i<rel counter;i++){

=2) {

if(cg_or_real
printf ("@Node%d -> @Node%d
[@label=Y%s]\n",relinfo[i] .from,
relinfo[i] .to,relinfo[i] .relname);
}
if(cg_or_real == 1) {
printf ("@Node%da\t [@label=\"%s
\" " i,relinfo[i].relname);
printf ("@fontcolor=\"@blue\"
@shape = \"@oval\" J\n");
printf ("@Node%d -> @Node’da \n",
relinfoli] .from,i);
printf ("@Node%da -> @Node%d \n",
i,relinfo[i] .to);

j = relinfo[i] .level;

118

if (j > max) max = j;
sprintf (levell[j],"%s @Node’da",

levell[j],i);

for(j=1;j<=max;j++){
printf ("%d [@style=@invis]\n",j);
}
printf("{ ");
for(j=1;j<max; j++){
printf ("%d ->",3);
}
printf ("%d",J);
printf (" [@style=@invis]\n}\n");
for(j=1;j<=max;j++){
printf ("{@rank=0same %d %s}\n",j,
levell[jl);

printf ("Q@rankdir=@TB}\n") ;
T counter=1;

rel counter=1;

I

NNE: compoundC {

119

$$.head = $1.head;
$$.1level = $1.1level;

compoundC: '<' compoundR '-' concept_term '>' {
relinfo[rel counter].from = $2.head;
relinfo[rel counter].to = $4.head;

strcpy(relinfo[rel counter].relname,$2.token);

relinfo[rel counter].level=$2.level;

rel counter++;

$$.head = $4.head;
$$.1level = $4.1evel;
}
| '<' concept_term '-' concept_term '>' {
relinfo[rel counter].from = $2.head;
relinfo[rel counter].to = $4.head;
strcpy(relinfo[rel counter].relname,"@R");

rel counter++;

$$.head = $4.head;

$$.1level = $4.1level;

}

compoundR: '<' concept_term '-' rel term '>'{
$$.head = $2.head;

strcpy ($$.token, $4.token) ;

120

$$.1level = $4.1level;
}
concept_term: NNE {
$$.head = $1.head;
if (debug) { printf ("NNE\n");
fflush(stdout);?}
}
| concept {
strcpy (terminfo[T_counter] .word,$1.token);
strcpy(terminfo [T_counter] .type, "concept") ;
terminfo[T_counter] .level=$1.level;
$$.1evel = terminfo[T counter].level;
$1.head = T_counter;

T counter++;

$$.head = $1.head;

if (debug) {printf("concept_term = %s
pos = %d type = concept\n",
$1.token,T_counter) ;fflush(stdout);}
}
rel term: sambanXaH {

strcpy ($$.token,$1.token) ;

$$.head = $1.head;

$$.1level = $1.1level;

121

if (debug) {printf("relation = %s

pos = %d type = relation\n",
$1.token,T counter) ;fflush(stdout);}
}

Dot
#include <stdio.h>

#include <stdlib.h>

int debug;

int cg_or_real;

char level[10] [100];

int yyerror(char *s) {
fprintf (stderr,"%s\n",s);
return (0);

}

int main(int argc, char *argv[]){

T counter = 1;

rel counter = 1;

min = 1;
max = 3;
debug = O;

cg_or_real = 2;

/* By default it produces a graph that is close to reality.
cg(C) = 1; real(R) = 2 %/

/* Usage: nne2diagram.out [DCR] */

122

if(argc > 1) {
if (index(argv[1],'D"')) debug=1;
if (index(argv[1],'C')) cg_or_real=1;
if (index(argv[1],'R')) cg_or_real=2;
}
yyparse() ;
return 1;
}
int getmin(int a,int b){
if(b > 0) {
if(a > b) { a = b;}

return a;
}
int getmax(int a,int b){
if(b > 0) {
if(a <b) { a ="b;}
}
return a;

}

123

Type-identifier programs
This program is also written in Lex and Yacc.

Lex program

hi

#include "typeidentifier.tab.h"

h}

%option nounput

ioption noinput

Yoo

[a-zA-Z]+ {strcpy(yylval.padainfo.word,yytext);

return concept;}

\n { return '\n';}
\<{ return '<';}
\>{ return '>';}
\-{ return '-';}
Yo

Yacc program

Junion {

struct node{
char word[1000];
char head[100];
} padainfo;

}

124

4

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

char type[10];

int yy
int yy
/3

Jhtoken
htoken
Jitoken
Jhtoken
Jhtoken
Jtoken
Jhtoken

%token

htype
htype
htype
htype
htype
Yoo

exampl

lex();

error();

<padainfo> niRTa
<padainfo> vquwwi
<padainfo> nirUpiwa
<padainfo> nirUpaka
<padainfo> avacCinna
<padainfo> avacCexaka
<padainfo> aBAva

<padainfo> concept

<padainfo> compound
<padainfo> Ppada
<padainfo> Upada
<padainfo> pada

<padainfo> example

es: example

| examples example

125

example: compound '\n' { printf("%s \n",$1.word); }

)

compound :

if (!strcemp($1.

if (!strcmp($1
if ('stremp($1
if (!'strcmp($1
if (!'strcmp($1
if ('stremp($1
if (!'strcmp($1
if (!'strcmp($1
if (!strcmp($1
if (I'strcmp($1
if (!'strcmp($1
if (!'strcmp($1
if ('stremp($1
if (!'strcmp($1
if (!'strcmp($1
if (!strcmp($1
if (I'stremp($1
if (!'strcmp($1
if (!'strcmp($1
if ('stremp($1

Ppada

'-' Upada {
strcpy(type,"@R");
head,"niRTa")) strcpy(type,"@K1");

.head,"vqwwi")) strcpy(type,"@K1");
.head, "nirUpiwa")) strcpy(type,"@K1");
.head, "nirUpaka")) strcpy(type,"@K1");
.head, "avacCinna")) strcpy(type,"@K1");
.head, "avacCexaka")) strcpy(type,"@K1");
.head, "rahiwa")) strcpy(type,"@T6");
.head,"eka")) strcpy(type,"@Tds");
.head, "xvi")) strcpy(type,"Q@Tds");
.head,"wri")) strcpy(type,"@Tds");
.head, "cawur")) strcpy(type,"@Tds");
.head, "paFca")) strcpy(type,"@Tds");
.head,"Rat")) strcpy(type,"@Tds");
.head, "sapwa")) strcpy(type,"@Tds");
.head,"aRta")) strcpy(type,"@Tds");
.head, "nava")) strcpy(type,"QTds");
.head, "xaSa")) strcpy(type,"@Tds");
.head,"Sawa")) strcpy(type,"@Tds");
.head, "sahasra")) strcpy(type,"@Tds");
.head,"viXa")) strcpy(type,"@K1");

126

if (!strcemp($1.
if (!'strcemp($1.
if (!'strcmp($1.
if (!strcemp($1.
if (!strcemp($1.
if (!'strcmp($1.
if (!stremp($1.
if (!strcemp($1.
if (!'strcemp($1.
if (!'strcmp($1.
if (!stremp($1.
if (!strcemp($1.
if (!'strcmp($1.
if (!strcemp($1.
if (!strcemp($1.
if (!'strcemp($1.
if (I'strcmp($1.
if (!strcemp($1.
if (!strcemp($1.
if (!'stremp($1.
if (!strcemp($1.
if (!strcemp($1.
if (!'stremp($1.
if (Istrcmp($1.
if (!strcemp($1.
if (!strcemp($1.
if (!'strcmp($1.

head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,

head,

"Awmaka")) strcpy(type,"@K1");
"ukwa")) strcpy(type,"@K1");
"janya")) strcpy(type,"QT5");
"anukUla")) strcpy(type,"@K1");
"AXAraka")) strcpy(type,"@K1");
"aXikaraNaka")) strcpy(type,"@K1");
"kAryaka")) strcpy(type,"@K1");
"kAraNaka")) strcpy(type,"@K1");
"viSeRyaka")) strcpy(type,"@K1");
"viSeRaNaka")) strcpy(type,"@K1");
"prakAraka")) strcpy(type,"@K1");
"saMsargaka")) strcpy(type,"@K1");
"saMsargika")) strcpy(type,"@K1");
"viRayaka")) strcpy(type,"@K1");
"viRayika")) strcpy(type,"@K1");
"lakRyaka")) strcpy(type,"@K1");
"lakRaNaka")) strcpy(type,"@K1");
"vqwwika")) strcpy(type,"@K1");
"sAmAnyIya")) strcpy(type,"@K1");
"aBAvIya")) strcpy(type,"@K1");
"aXikaraNIya")) strcpy(type,"@K1");
"prawiyogiwAka")) strcpy(type,"@K1");
"anuyogiwAka")) strcpy(type,"@K1");
"AXeyawAka")) strcpy(type,"@K1");
"AXArawAka")) strcpy(type,"@K1");
"aXikaraNawAka")) strcpy(type,"@K1");
"kAryawAka")) strcpy(type,"@K1");

127

if (!'strcmp($1
if (!strcmp($1
if ('stremp($1
if (!'strcmp($1
if (!'strcmp($1
if ('stremp($1
if (!'strcmp($1
if (!'strcmp($1
if (!strcmp($1
if ('stremp($1

if (!'strcmp($1

if (!strcemp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!'strcemp($3.
if (!strcemp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!strcemp($3.

.head, "kAraNawAka")) strcpy(type,"@K1");
.head, "viSeRyawAka")) strcpy(type,"@K1");
.head, "viSeRaNawAka")) strcpy(type,"@K1");
.head, "prakArawAka")) strcpy(type,"@K1");
.head, "saMsargawAka")) strcpy(type,"@K1");
.head, "saMsargiwAka")) strcpy(type,"@K1");
.head, "viRayawAka")) strcpy(type,"@K1");
.head, "viRayiwAka")) strcpy(type,"@K1");
.head, "lakRyawAka")) strcpy(type,"@K1");
.head, "lakRaNawAka")) strcpy(type,"@K1");

.head, "vqwwiwAka")) strcpy(type,"@K1");

head,"niRTa")) strcpy(type,"QT7");
head,"vquwwi")) strcpy(type,"QT7");
head,"nirUpiwa")) strcpy(type,"@T3");
head, "nirUpaka")) strcpy(type,"@T6");
head,"avacCinna")) strcpy(type,"@T3");
head, "avacCexaka")) strcpy(type,"@T6");
head,"aBAva")) strcpy(type,"@T6");
head,"Bexa")) strcpy(type,"QT6");
head,"Binna")) strcpy(type,"@T5");
head,"rahiwa")) strcpy(type,"@T3");

if (!strcmp($3.head, "sAmAnAXikaraNyam")) strcpy(type,"@T6");

if (!strcmp($3.

head, "Awmaka")) strcpy(type,"©@Bs6");

128

if (!strcemp($3.
if (!strcemp($3.
if (!'stremp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!'strcemp($3.
if (!strcemp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!'strcemp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!strcemp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!'strcemp($3.

head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,
head,

head,

"janya")) strcpy(type,"@T5");
"ukwa")) strcpy(type,"QT7");

"Axi")) strcpy(type,"@Bs6");
"sambanXa")) strcpy(type,"@K4");
"svarUpa")) strcpy(type,"@T6");
"pakRaka")) strcpy(type,"@Bs6");
"sAXyaka")) strcpy(type,"©@Bs6");
"hewuka")) strcpy(type,"@Bs6");
"prawiyogika")) strcpy(type,"©@Bs6");
"anuyogika")) strcpy(type,"@Bs6");
"AXeyaka")) strcpy(type,"©@Bs6");
"AXAraka")) strcpy(type,"@Bs6");
"aXikaraNaka")) strcpy(type,"©@Bs6");
"kAryaka")) strcpy(type,"©@Bs6");
"kAraNaka")) strcpy(type,"@Bs6");
"viSeRyaka")) strcpy(type,"@Bs6");
"viSeRaNaka")) strcpy(type,"@Bs6");
"prakAraka")) strcpy(type,"@Bs6");
"saMsargaka")) strcpy(type,"@Bs6");
"saMsargika")) strcpy(type,"@Bs6");
"viRayaka")) strcpy(type,"@Bs6");
"viRayika")) strcpy(type,"@Bs6");
"lakRyaka")) strcpy(type,"©@Bs6");
"lakRaNaka")) strcpy(type,"@Bs6");
"vqwwika")) strcpy(type,"©@Bs6");
"prawiyogiwAka")) strcpy(type,"©@Bs6");
"anuyogiwAka")) strcpy(type,"@Bs6");

129

if (!strcemp($3.
if (!stremp($3.
if (!stremp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!stremp($3.
if (!strcemp($3.
if (!'strcmp($3.
if (!strcmp($3.
if (!strcemp($3.
if (!strcemp($3.

head, "AXeyawAka")) strcpy(type,"@Bs6");
head, "AXArawAka")) strcpy(type,"@Bs6");
head, "aXikaraNawAka")) strcpy(type,"@Bs6");
head, "kAryawAka")) strcpy(type,"@Bs6");
head, "kAraNawAka")) strcpy(type,"@Bs6");
head, "viSeRyawAka")) strcpy(type,"@Bs6");
head, "viSeRaNawAka")) strcpy(type,"@Bs6");
head, "prakArawAka")) strcpy(type,"@Bs6");
head, "saMsargawAka")) strcpy(type,"@Bs6");
head, "saMsargiwAka")) strcpy(type,"@Bs6");
head, "viRayawAka")) strcpy(type,"@Bs6");
head, "viRayiwAka")) strcpy(type,"@Bs6");
head, "lakRyawAka")) strcpy(type,"@Bs6");
head, "lakRaNawAka")) strcpy(type,"@Bs6");

head, "vquwiwAka")) strcpy(type,"@Bs6");

sprintf ($$.word, "%s-%shs",$1.word, $3.word, type) ;

Ppada :

strcpy ($$.head,

3

Upada :

strcpy ($$.head,

I

strcpy ($$.head, $3.head) ;
}

'<' pada {sprintf($$.word,"<%s",$2.word);

$2.head) ;}

pada '>'{sprintf($$.word,"%s>",$1.word);

$1.head) ;}

130

pada : compound { strcpy($$.word,$1.word);
strcpy ($$.head,$1.head) ; }

| concept { strcpy($$.word,$1.word);
strcpy ($$.head, $1.word) ; }

b

Dot
#include <stdio.h>

#include <stdlib.h>

int yyerror(char *s) {
fprintf (stderr,"%s\n",s);

return (0);

int main(int argc, char *argv([]){

yyparse() ;

return 1;

131

Bibliography

[1] S. R. Arjuna and G. Huet. Semi-automatic analysis of Navya-

Nyaya compounds, SALA-30, Hyderabad, 2014.

[2] S. R. Arjuna and A. Kulkarni. Segmentation of Navya-Nyaya
Expressions. In ICON-2014, 2014.

[3] A. H. Bhat. Paficalaksani. Poornaprajna Samshodhana Mandi-

ram, Bengaluru, 2004.

[4] R. Briggs. Knowledge Representation in Sanskrit and Artificial
Intelligence. AI Magazine, 6(1):32--39, 1985.

[5] N.Chomsky. Three models for the description of Language. IRE

Transactions on Information Theory, 1956.

[6] N. Chomsky. On Certain Formal Properties of Grammars. In

Information and Control, pages 137--167, 1959.

[7] C. P. Dwivedi. Vyakaranabhtisanasarah of Kaundabhatta.
Chowkambha Sanskrit Prathishthan, New Delhi, 2005.

[8] V. L. Frank Van Harmelen and B. Porter. Handbook of Knowl-

edge Representation. Elsevier Science, 2007.

132

[9] J. Ganeri. Towards a formal regimentation of the Navya-Nyaya
technical language-I. Logic, Navya-Nyaya & Applications,
pages 109--124, 2008.

[10] G.Huet. Themes and Tasks in Old and Middle Indo-Aryan Lin-
guistics, pages 307--325. Motilal Banarsidass, Delhi, 2006.

[11] G. Huet and P. Goyal. Design of a lean interface for Sanskrit
corpus annotation. In D. M. Sharma, R. Sanghal, K. Kr.Arora,
and B.K.Murthy, editors, Proceedings of ICON-2013, pages 177-
-186, 2013.

[12] M. D. Hyman. From Paninian Sandhi to Finite State Calculus.

In Sanskrit Computational Linguistics, pages 253--265, 2008.

[13] D. H. H. Ingalls. Materials for the Study of Navya-Nyaya Logic.
Harvard University Press, 1951.

[14] B. Jha and M. Jha. Rasagangadhara of Panditaraja Jagannatha.
Chaukambha Vidyabhavan, Varanasi, 1993.

[15] U. Jha, editor. A Primer of Navya-Nyaya Language and
Methodology. Asiatic Society, Kolkata, 2004.

[16] V.N. Jha. Visayatavada of Harirama Tarkalankara. University
of Pune, Pune, 1987.

[17] V.N. Jha, editor. The Philosophy of Relations. Satguru Publica-
tions, 1990.

[18] V. N. Jha, editor. Dictionary of Nyaya Terms. University of
Pune, Pune, 2001.

133

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Jimtitavahana. Dayabhagah. Siddhesvar Press, Kolkata, 1893.

A. Kulkarni. Navya-Nyaya for Scientists and Technologists: A
tirst step, (mtech). Master's thesis, Indian Institute of Technol-

ogy, Kanpur, 1994.

A. Kulkarni and A. Kumar. Statistical constituency parser for
Sanskrit compounds. In Proceedings of ICON 2011. Macmil-
lan Advanced Research Series, Macmillan Publishers India Ltd.,

2011.

A. Kulkarni, S. Paul, M. Kulkarni, A. Kumar, and N. Surtani.
Semantic Processing of Compounds in Indian Languages. In

COLING-2012 Proceedings, pages 1489--1502, 2012.

T. Kulkarni and J. Joshi. The language of Logic - Navyanyaya

Perspectives. Manipal university Press, Manipal, India., 2013.

A. Kumar. An Automatic Compound Processing. PhD thesis,

Department of Sanskrit Studies, University of Hyderabad, 2012.

A. Kumar and A. Kulkarni. Clues from Astadhyayi for com-
pound type. In M. Kulkarni and C. Dangarikar, editors, Recent
Researches in Sanskrit Computational Linguistics Fifth Interna-
tional Symposium Proceedings, pages 62--83. D. K Printworld
(P) Ltd, New Delhi, 2013.

A. Kumar, V. Mittal, and A. Kulkarni. Sanskrit compound pro-
cessor. In Proceedings of the 4th International Sanskrit Compu-

tational Linguistics Symposium, 2010.

134

[27] B. K. Matilal. The Navya-Nyaya Doctrine of Negation. Harvard
University Press, Cambridge, Massachusetts, 1968.

[28] B. K. Matilal. Epistemology, Logic and Grammar in Indian
Philosophical Analysis Ed. Jonardon Ganeri. Oxford University
Press, 2005.

[29] G. A. Miller. The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information. The

Psychological review, 63:81--97, 1956.

[30] V. Mittal. Automatic Sanskrit Segmentizer Using Finite State
Transducers. In ACL (Student Research Workshop), pages 85--
90, 2010.

[31] J. N. Mohanty. Classical Indian Philosophy. Rowman and Lit-
tlefield Publishers, Inc., 2000.

[32] A.Natarajan and E. Charniak. S/3 - Statistical Sandhi Splitting.
In IJCNLP, pages 301--308, 2011.

[33] D. Patil. Vidyadhari. Samarth media center, Pune, 2014.

[34] S. Polovina. An Introduction to Conceptual Graphs. In ICCS-
2007, pages 1--14, 2007.

[35] D. Rao, editor. Tarkasamgraha with Sabdabodha and Nyaya-
bodhini. Poornapragna Vidyapeetha, 2015.

[36] S. Sastry. Paficalaksanisarvasvam. Bharatiya Vidya Sansthan,

Varanasi, 2005.

135

[37] P. Satuluri. Sanskrit Compound Generation: With Focus on the
Order of Operations. PhD thesis, Department of Sanskrit Stud-
ies, University of Hyderabad, 2016.

[38] C.Shastri. Mimamsakoustubhah of Khandadeva. Chowkambha

Sanskrit Series Office, Varanasi, 1991.

[39] J. L. Shaw. The Nyaya on Cognition and Negation. Journal of
Indian Philosophy, Vol-8, Num-3, pages 279--302, 1980.

[40] B. Shukla. Mathuri Paficalaksani. Rajasthan Hindi Granth
Academy, Jaipur, 1984.

[41] B. Shukla. Navya-nyaya ke paribhasika padarth. Paramarsha
Pratishtan, Pune, 1998.

[42]]. F. Sowa. Conceptual Structures. Addison-Wesley, 1985.

[43] A. Upadhye. Nyayavatara with Vivrti commentary. Jaina
Sahitya Vikasa Mandala, Bombay, 1971.

[44] Varadacharya. Tarkasangraha with Aloka commentary. Arya
Grantha Prakashan, Mysore, 2007.

[45] S. Varakhedi. Knowledge Representation schemes of Navya-
Nyaya and other Western systems. PhD thesis, Poornaprajna
Samshodhana Mandiram, Bengaluru, 2004.

[46] T. Wada. The Analytical Method of Navya-Nyaya. Journal of
Indian Philosophy, 29:519--530, 2001.

[47] T. Wada. The Analytical Method of Navya-Nyaya. Egbert

Forsten, Groningen, 2007.

136

	Title Page
	Declaration
	Certificate
	Acknowledgements
	Table of Contents
	List of Figures
	Dissertation related papers presented at Conferences
	Overview
	Introduction
	Navya-Nyāya
	Influence of Navya-Nyāya Technical Language
	Motivation and Goal of research
	Parsing an NN Expression

	The organisation of thesis
	Contribution of the thesis

	Segmentation for NN Expressions
	Preparation of Gold data
	Sanskrit Heritage Reader for NNEs
	Saṁsādhanī for NNEs
	Saṁsādhanī-NN Segmenter with controlled lexicon

	Constituency Parser for NNE
	Syntax of NN Expressions
	Some salient features of NNEs
	Building a constituency Parser

	Type-Identifier
	Earlier efforts
	Analysis of NNE compounds
	Context-free grammar
	Analysis of the result
	Conclusion

	Graphical Representation
	Earlier efforts
	What is Conceptual Graph?
	Conceptual Graphs for NN Expression
	Compressed CGs
	Grammar of NN Expressions
	NN Expressions to Conceptual Graphs
	An illustration

	Nyāyacitradīpikā
	Conclusion
	Appendices
	Bibliography

