
Computational Analysis and Graphical
Representation of Navya-Nyāya
Expressions - Nyāyacitradīpikā

A dissertation submitted to the University of Hyderabad

for the award of the degree of

Doctor of Philosophy

in

Sanskrit Studies

Arjuna S.R.
12HSPH01

Department of Sanskrit Studies

School of Humanities

University of Hyderabad

Hyderabad

December 2016

Computational Analysis and Graphical
Representation of Navya-Nyāya
Expressions - Nyāyacitradīpikā

A dissertation submitted to the University of Hyderabad

for the award of the degree of

Doctor of Philosophy
in

Sanskrit Studies

by

Arjuna S.R.
12HSPH01

under the guidance of

Prof. Amba P. Kulkarni

Department of Sanskrit Studies

School of Humanities

University of Hyderabad

Hyderabad

December 2016

Declaration

I, Arjuna S.R., hereby declare that the work embodied in this

dissertation entitled “Computational Analysis and Graphical

Representation of Navya-Nyāya Expressions - Nyāyaci-

tradīpikā” is carried out by me under the supervision of Prof. Amba

P. Kulkarni, Professor, Department of Sanskrit Studies, University of

Hyderabad, Hyderabad and has not been submitted for any degree in

part or in full to this university or any other university. I hereby agree

that my thesis can be deposited in Shodhganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is en-

closed.

Arjuna S.R.

12HSPH01

Date:

Place: Hyderabad

Signature of the Supervisor

ii

Department of Sanskrit Studies
University of Hyderabad, Hyderabad

Certificate

This is to certify that the dissertation entitled Computational

Analysis and Graphical Representation of Navya-Nyāya Ex-

pressions - Nyāyacitradīpikā submitted by Arjuna S.R. bearing

registration number 12HSPH01 in partial fulfilment of the require-

ments for the award of Doctor of Philosophy in the School of Hu-

manities is a bonafide work carried out by him under my supervision

and guidance.

This dissertation is free from plagiarism and has not been submitted

previously in part or in full to this or any other University or Institution

for award of any degree or diploma.

Parts of this dissertation have been:

A. published in the following publications:

1. Natural Language Processing - ICON-2014, ISBN:

9789383635528, Chapter: Parsing

2. Sanskrit and Computational Linguistics, 2016, ISBN:

9788193231906, Chapter: I

iii

B. presented in the following conferences:

1. Segmentation of Navya-Nyāya Expressions, International

Conference on Natural Language Processing (ICON) - 2014, Goa

University, Goa - 2014

2. Analysis and Graphical Representation of Navya-Nyāya

Expressions, 16th World Sanskrit Conference, Bangkok, Thai-

land - 2015

3. Type-identifier for Navya-Nyāya Expressions, Philosophi-

cal Contributions of Prof. Biswambar Pahi, Jaipur, India - 2016

Further, the student has passed the following courses towards fulfil-

ment of course-work requirement for Ph.D:

Course Code Course Name Credits Pass/Fail
SK 816 Introduction to Linguistics 4 Pass
SK 812 Natural Language Processing 4 Pass
SK 826 Research Methodology 4 Pass
SK 827 Indian and Western Logical Systems 4 Pass

Prof. Amba P. Kulkarni Dr. J.S.R.A Prasad

Supervisor Head

Professor Associate Professor

Department of Sanskrit Studies Department of Sanskrit Studies

School of Humanities School of Humanities

Dean

School of Humanities

University of Hyderabad

iv

Acknowledgements

This dissertation would not have been possible without the guidance

and the help of many individuals who extended their support in com-

pletion of this work.

First and foremost, my utmost gratitude to my supervisor Prof. Amba

P. Kulkarni for her guidance, patience and continuous support through-

out my research work. Without her, this work would not have been pos-

sible. I feel blessed for being able to work with a dedicated, supportive

and caring person like her. She was there for me in all the situations,

whenever I needed her. She is the reason for all my achievements in

academic life. She is the inspiration for me.

I kowtow to His Holiness Sri Vishveshateertha Swamiji of Pejavara

Matha, Udupi for their unconditional love, care and support from my

childhood.

I express my sincere gratitude to Prof. Gérard Huet for his valuable

guidance in my research. He taught me a lot in my academic and

personal life. I am indebted for his care and love.

I am grateful to Prof. V. N. Jha for the encouragement and guidance

in the research. He visited the department to encourage my research

and I am thankful to him for his valuable suggestions.

I express my gratitude to Prof. Shrinivasa Varakhedi for his contin-

uous support in profound discussions on various research problems.

I express my heartfelt thanks to Prof. K. V. Ramakrishna-

macharyulu, Prof. K. S. Prasad, Prof. K. N. Murthy, Prof. K.

Subrahmanyam, Prof. Tirumala Kulakarni for their support and en-

v

couragements in my research.

I express my sincere gratitude to Dr. J. S. R. Anjaneya Prasad for

his constant support and encouragement in my research. He helped me

a lot with care.

I also convey my regards to my teacher Dr. A. Haridasa Bhatta who

gave me valuable insights on my work.

I am indebted to Dr. Anil Kumar for his help, care and support

during my research. He is like brother to me.

I am grateful to Dr. Pavankumar S, Dr. Monali Das, Dr. Siva P,

Dr. Surendra K, Mr. Sivasenani N,

Ms. Preeti Shukla, Mr. Devanand Shukl, Mr. Krishnamohan K, Dr.

Shailaja N, Dr. Vinaya B, Dr. Vani M, Dr. Sreedevi K, Dr. Anupama

R, Mr. Sanjeev P, Mr. Madhusoodan P, Mr. CG Krishnamurthi, Ms.

Gowri, Ms. Kiranmayee, Ms. Sonia for thier support.

I should thank my most beloved friend Karunakar M for his help and

support in academic and personal work.

I am also thankful to my friends Pavankumar, Monali, Praveen Gatla,

Jatin Sharma, Gaya Hadiya, Jayshree Gajjam, Gauri Sahoo, Sanal,

Raghavan, Ambika Prasad Pani, Rik Ganguly, Santosh Yadav, Imran,

Vijay, Venkat Rao uncle of Social Science Canteen and my beloved

group HCU Kannada Balaga for their love and support.

I am most grateful to my parents, family and my beautiful fiancée

Srividya for their continuous support and encouragement.

I cannot forget the office staff of our department, who provided me

all kind of infrastructural help. I thank everyone from Department of

vi

Sanskrit Studies office.

I would like to thank one and all, who have directly or indirectly been

instrumental in the completion of my research work and dissertation.

vii

Contents

Title Page ii

Declaration ii

Certificate iii

Acknowledgements v

Table of Contents viii

List of Figures xi

Dissertation related papers presented at Conferences xiii

1 Overview 8

1.1 Introduction . 8

1.2 Navya-Nyāya . 10

1.3 Influence of Navya-Nyāya Technical Language 10

1.4 Motivation and Goal of research 13

1.4.1 Parsing an NN Expression 14

1.5 The organisation of thesis 17

1.6 Contribution of the thesis 18

viii

2 Segmentation for NN Expressions 20

2.1 Preparation of Gold data 22

2.2 Sanskrit Heritage Reader for NNEs 23

2.3 Saṁsādhanī for NNEs 28

2.4 Saṁsādhanī-NN Segmenter with controlled lexicon . . 35

3 Constituency Parser for NNE 38

3.1 Syntax of NN Expressions 39

3.2 Some salient features of NNEs 42

3.3 Building a constituency Parser 44

4 Type-Identifier 47

4.1 Earlier efforts . 47

4.2 Analysis of NNE compounds 48

4.3 Context-free grammar 51

4.4 Analysis of the result 56

4.5 Conclusion . 56

5 Graphical Representation 58

5.1 Earlier efforts . 58

5.2 What is Conceptual Graph? 60

5.3 Conceptual Graphs for NN Expression 62

5.4 Compressed CGs . 69

5.5 Grammar of NN Expressions 70

5.6 NN Expressions to Conceptual Graphs 71

5.6.1 An illustration 73

6 Nyāyacitradīpikā 79

ix

7 Conclusion 87

Appendices 89

Bibliography 131

x

List of Figures

1 The NNE represented in Conceptual Graphs 6

2.1 FSA showing possible taddhita suffixes in NNE 23

2.2 First problem in Heritage segmenter 25

2.3 Second problem in Heritage segmenter 26

2.4 ifcs(in fine compositi or samāsa-uttarapada) found in

NNEs . 29

3.1 A screen-shot of the interface 45

3.2 A screen-shot of the interface after user-selection . . . 46

4.1 Constituency parse corresponding to the grammar . . . 54

4.2 Head-info computed according to the grammar - step 1 55

4.3 Head-info computed according to the grammar - step 2 55

5.1 The graphs used by traditional scholars 59

5.2 An example of CG . 60

5.3 General form of CG 61

5.4 General form of an NNE 62

5.5 Conceptual Graph for (4) 64

5.6 Conceptual Graph with position information for (4) . . 64

xi

5.7 Conceptual Graph with position information for (6) . . 65

5.8 Conceptual Graph with position information for (7) . . 66

5.9 Conceptual Graph for (1) 68

5.10 Conceptual graph corresponding to (9) 68

5.11 Conceptual graph corresponding to (10) 69

5.12 An instance of SCL graph 69

5.13 SCL graph corresponding to (10) 70

5.14 Constituency parse corresponding to the grammar . . . 74

5.15 Compact parse - 1 . 74

5.16 Compact parse with position information 75

5.17 Compact parse . 75

5.18 concept node acquires the ‘head’ position from child . . 75

5.19 relation term inherits the ‘head’ position 76

5.20 relation node inherits the position of 2nd relata 76

5.21 CG generated by modified grammar 78

6.1 Homepage of Nyāyacitradīpikā with two modes 80

6.2 Segmented output from SCL segmenter 81

6.3 user interface to select anuyogin 82

6.4 Completely disambiguated NNE 83

6.5 Conceptual Graph (CG) of the selected NNE 84

6.6 Compressed CG of the selected NNE 85

6.7 Identified compound types of the selected NNE 86

xii

Dissertation related papers presented at Conferences

Arjuna S.R. and Amba Kulkarni, “Segmentation of Navya-Nyāya Ex-

pressions”. International Conference on Natural Language Processing.

December 18th-21th 2014. Goa University, Goa.

Arjuna S.R. and Amba Kulkarni, “Analysis and Graphical Represen-

tation of Navya-Nyāya Expressions”. World Sanskrit Conference. June

28th-July 2nd 2015. Bangkok, Thailand.

Amba Kulkarni and Arjuna S.R., “Type-identifier for Navya-Nyāya

Expressions”. Philosophical contributions of Prof. Biswambar Pahi.

March 12th-14th 2016. University of Rajasthan, Jaipur, Rajasthan.

xiii

Synopsis

Nyāya (Indian Logic) is one of the fundamental branches of philos-

ophy in Sanskrit. Sage Gautama is known as the founder of Nyāya

philosophy. Taking into consideration the developments in Nyāya, one

can classify the Nyāya literature into two broad divisions.

1. Prācīna-Nyāya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyāya (Modern Logic/Neo-Logic, 1200 AD - till date)

According to the tradition the period of Prācīna-Nyāya ranges from

Sage Gautama to Gaṅgeśa and post Gaṅgeśa period as Navya-Nyāya.

In ancient times, debate was one of the important means to express

the thoughts or ideas of one’s own philosophy to the scholars and the

common people as well. Indian intellectual tradition considers debate

seriously, and it came up with specific rules regarding the conduct of a

debate. In Nyāyasūtra, 5.2.1 - 24, Sage Gautama himself defines the ni-

grahasthānas. But around 9th century, Śrīharṣha, an Advaita vedāntin

in his work Khaṇḍanakhaṇḍakhādya came up with many fallacies in

Nyāya philosophy. After this, Udayana felt the need of a new technical

language, where there is no ambiguity in expressing the issues. In the

works of Udayana, Ātmatattvaviveka and Nyāyakusumāñjali, we find

the earlier traces and hints towards the necessity of a technical language

1

and efforts towards its creation. A few decades later, Gaṅgeśa with the

influence of Udayana, came up with an idea to bring unambiguity in the

debate process. Thus he completely concentrated on pramāṇa part, not

on the prameya as Nyāya tradition did. He developed a new technical

language in his monumental work. This gave rise to a new offshoot of

Nyāya, Navya-Nyāya (NN).

Development of new language for the debate made Gaṅgeśa stood apart

from all other philosophers. He emphasized on the development of

many technical terms that brought unambiguity in the process of de-

bate. This technical language influenced all other branches of philos-

ophy in a big way. Of course, Navya-Nyāya also contributed towards

theoretical insights into the Nyāya philosophy.

We notice the seeds of Navya-Nyāya in the works of Nyāyakusumāñjali

of Udayana. But later Gaṅgeśa (12th century) provided a strong foot-

ing through his Tattvacintāmaṇi and thus renowned as the founder of

NN. NN is famous for its sophisticated and unique language to express

the thoughts in an unambiguous way. This language of NN deals with

verbal cognition, logic and epistemology. This language influenced al-

most every Indian philosophy. In recent times, Computer Scientists(4)

also noticed the importance of this formal language.

Goal of research
There are two types of difficulties in understanding this language.

• Linear structure with long compounds

• Concepts associated with the conceptual terms

There are noteworthy efforts in understanding of the complexity of

conceptual terms. Shukla(40) with his lucid explanations eases the

2

complexity of the NN technical terms. Ingalls(13) compared the NN

concepts with western logic. Scholars like Matilal(27) and many others

contributed to ease this difficulty.

A few scholars concentrated on the understanding of the syntax of

the NN technical language. Kulkarni(20) analysed this language with

computational perspective using the modified version of Conceptual

Graph. Ganeri(9) provides a formal description of various primitive

terms of NN. Scholars like Varakhedi(45) and a few others put their

effort in this field.

NN Expressions are used to describe the cognitive structure

(jñānākāraḥ) as well as the physical world around us (sambaddha-

padārthaḥ). An NN Expression is a compound. A compound, in

Sanskrit, is written as a single word without any gap or hyphen in

between the components, with components joined together following

euphonic changes. This makes the processing of Sanskrit compounds

more challenging. Kumar et al.(26) describe the steps involved in pro-

cessing Sanskrit compounds and also discuss the associated computa-

tional complexity. The steps are -

1. Splitting a compound into components.

This involves undoing euphonic transformations.

2. Analysing its constituent structure.

At this stage a compound is analysed showing how the compo-

nents are grouped together.

3. Identifying relations between the components.

Now the relation between the components thus grouped is made

explicit.

4. Providing a paraphrase of the compound.

3

Finally a paraphrase of the compound is generated.

We illustrate these steps with two examples: an English one followed

by an NN Expression.

Example 1: Consider the long compound ‘lake water pollution reduc-

tion log’.

We skip step 1, since the components here are already split.

1. Constituency analysis for this compound is

((((lake-water)-pollution)-reduction)-log)

2. Relations between the components are now marked.

((((lake-water)T7-pollution)T6-reduction)T7-log)T6

Here T stands for Tatpuruṣa (an endo-centric) compound and

the numbers 6 and 7 indicate the genitive and the locative case

markers.

3. The paraphrase of this compound is generated.

Log of the reduction in pollution of water in lake.

Example 2: Consider the following NN Expression which defines earth

as a substance with smell as its characteristic property.

gandhatvāvacchinnagandhaniṣṭhādheyatānirūpitādhikaraṇatāvatī.

1. After splitting the compound into its components, we get

gandhatva-avacchinna-gandha-niṣṭha-ādheyatā-nirūpita-

adhikaraṇatā∧vatī.

Here the components are separated by hyphen and the deriva-

tional suffix ‘-vatī’ is separated by a caret.

2. The constituency parse of this compound is

((((gandhatva-avacchinna)-((gandha-niṣṭha)-ādheyatā))-

nirūpita)-adhikaraṇatā)∧vatī

3. After identifying the relations between the components, we get

4

((((gandhatva-avacchinna)T3-((gandha-niṣṭha)T7-

ādheyatā)K)K-nirūpita)T3-adhikaraṇatā)K∧vatī

where K, T3, and T7 stand for Karmadhāraya, and Tatpu-

ruṣa compounds with instrumental and locative case suffixes.

These are all endo-centric compounds, with a requirement

of nominative, instrumental and locative case suffixes during

paraphrasing.

4. Finally the paraphrase of this compound is

Sanskrit: gandhatvena avacchinnā, gandhe niṣṭhā yā ādheyatā,

tannirūpitā adhikaraṇatā∧vatī

Gloss: by_smellness delimited in_smell residing which

substratum-ness determined_by_that superstatum-ness possess-

ing

English: An object which has superstatum-ness which is deter-

mined by the substratum-ness that is residing in the smell and is

delimited by the smell-ness.

In the traditional oral method of teaching, the teacher used to provide

the paraphrase of such long compounds starting from the innermost

compound, building in a bottom-up approach, joining one component

at a time, explaining the type of the compound. This would then

create a whole knowledge structure in the mind of a student. With the

advancement of new technology, now it is possible to represent the same

knowledge pictorially, which helps a modern student who relies more

on visual aids than memory to understand such complex compounds

easily.

5

The NNE can be represented pictorially after the constituency parse.

For instance, This NNE ((((gandhatva-avacchinna)-((gandha-niṣṭha)-

ādheyatā))-nirūpita)-adhikaraṇatā)∧vat-pṛthivī can be represented in

Conceptual Graphs as shown in Figure - 1.

Figure 1: The NNE represented in Conceptual Graphs

‘A picture is worth 1000 words’ so goes an English idiom. The best

way to ease this complexity is by representing the linear structure in a

diagrammatical form. We see use of diagrams to express NNEs since

long, as early as in 20th century. Vamacaraṇabhaṭṭācārya(33) used di-

agrams in his teachings. Later in the 60s, Wada(46) mentions that

Kitagawa started using diagrams to explain the NN theories. In 1987,

V.N.Jha(16) came up with a better solution. He started representing

the NNE in a unique diagrammatic form. This method simplified and

helped the Nyāya as well as other school students to understand the

structure of NN terminology. Later in 1994, Amba Kulkarni put her

efforts to build a bridge between NN and Western logic in her M.Tech

thesis(20). In this connection, she opted Conceptual Graph, a diagram-

6

matic representation scheme to show Navya-Nyāya’s linear structure

in a better way. Next Shrinivasa Varakhedi in his PhD thesis dis-

cussed about Knowledge Representation and used the diagrammatical

representation method to show Navya-Nyāya structure(45). Toshihiro

Wada(46) also used diagrams extensively in his works. Tirumala Ku-

lakarni and Jaideep Joshi also used diagrams(23) to explain the complex

NN terms in an easier way.

But all these efforts are manual. Our goal of research is to build a soft-

ware which renders an NNE diagrammatically, probably automatically

and if needed with some human inputs.

7

Chapter 1

Overview

1.1 Introduction
Nyāya (Indian Logic) is one of the fundamental branches of philosophy

in Sanskrit. Kauṭilya in Arthaśāstra emphasizes -

“Pradīpaḥ sarvavidyānām pradīpaḥ sarvakarmaṇām|

Āśrayaḥ sarvadharmāṇām śaśvadanvikṣhikī matā”.

Sage Gautama is known as the founder of Nyāya philosophy. Tak-

ing into consideration the developments in Nyāya, one can classify the

Nyāya literature into two broad divisions.

1. Prācīna-Nyāya (Ancient Logic, 600 BC - 1200 AD)

2. Navya-Nyāya (Modern Logic/Neo-Logic, 1200 AD - till date)

According to the tradition, the period of Prācīna-Nyāya ranges from

Sage Gautama to Gaṅgeśa and post Gaṅgeśa period as Navya-

Nyāya. But a few historians1 consider three divisions - Prācīna-Nyāya,

Madhyama-Nyāya and Navya-Nyāya.

1A History of Indian Logic by Satish Chandra Vidyabhushana.

8

In ancient times, debate was one of the important means to express the

thoughts or ideas of one’s own philosophy to the scholars and the com-

mon people as well. Debate or Dialogue used to take place to remove

the confusions in rituals, to highlight the importance of the philosophies

and many other purposes. Traditional scholars from different philo-

sophical backgrounds used to meet often at one place and demonstrate

their views. Some opposition used to raise on it and then the debate

will start between them. Indian intellectual tradition considers debate

seriously and it came up with specific rules regarding the conduct of a

debate. In Nyāyasūtra, 5.2.1 - 24, Sage Gautama himself defines the ni-

grahasthānas. But around 9th century, Śrīharṣha, an Advaita vedāntin

in his work Khaṇḍanakhaṇḍakhādya came up with many fallacies in

Nyāya philosophy. After this, Udayana felt the need of a new technical

language, where there is no ambiguity in expressing the issues. In the

works of Udayana, Ātmatattvaviveka and Nyāyakusumāñjali, we find

the earlier traces and hints towards the necessity of a technical language

and efforts towards its creation. A few decades later, Gaṅgeśa with the

influence of Udayana, came up with an idea to bring unambiguity in the

debate process. Thus he completely concentrated on pramāṇa part, not

on the prameya as Nyāya tradition did. He developed a new technical

language in his monumental work. This gave rise to a new offshoot of

Nyāya, Navya-Nyāya (NN).

The important division between Prācīna and Navya-Nyāya philosophy

is based on fundamental issues. Similar to other philosophies, Prācīna-

Naiyāyikas concentrate on the salvation and they discuss the topics

related to it. But Navya-Naiyāyikas did not stick to this and concen-

trated on pramāṇas and the development of a new technical language.

9

Development of new language for the debate made Gaṅgeśa stand apart

from all other philosophers. He emphasized on the development of

many technical terms that brought unambiguity in the process of de-

bate. This technical language influenced all other branches of philos-

ophy in a big way. Of course, Navya-Nyāya also contributed towards

theoretical insights into the Nyāya philosophy.

1.2 Navya-Nyāya
We notice the seeds of Navya-Nyāya in the works of Nyāyakusumāñjali

of Udayana. But later Gaṅgeśa (12th century) provided a strong foot-

ing through his Tattvacintāmaṇi and thus is renowned as the founder of

NN. NN is famous for its sophisticated and unique language to express

the thoughts in an unambiguous way. This language deals with verbal

cognition, logic and epistemology. This Navya-Nyāya Technical Lan-

guage(NNTL) was so much powerful in its unambiguous expressions

that it became the lingua-franca of almost all scholarly works of vari-

ous branches of knowledge such as Mīmāṃsā ‘exegesis’ (38), Vyākaraṇa

‘grammar’ (7), Sāhitya ‘literature’ (14), Jaina philosophy(43), and even

Law(19). In recent times, the importance of this formal language was

also noticed by the computer scientists(4).

1.3 Influence of Navya-Nyāya Technical

Language
The importance and usefulness of the technical language of NN were

noticed by everybody and within no time, it spread across all branches

of knowledge systems.The use of NNTL in Vyākaraṇa made it stand

10

apart from the old texts on Vyākaraṇa and thus resulted in a new

discipline Navya-Vyākaraṇa.

We find two usages of NNTL - to disambiguate a text and to define the

technical terms. Unambiguity being the main criterion in the knowledge

systems, it became one of the important branches of essential studies

for any Sanskrit scholar. Below we give a few glimpses of the pervasion

of NNTL in various branches of knowledge systems, with an example

for each.

• Knowledge Branch: Mīmāṃsā

Text: Mīmāṃsākaustubha of Khanṇḍadeva.

Context: In the Mīmāṃsā sūtra 2.1.4 on the discussion on how

11

vikalpa

12

1.4 Motivation and Goal of research
There are two difficulties in understanding NNTL viz. its linear struc-

ture with long compounds and the concepts associated with the concep-

tual terms. There are noteworthy efforts to understand the conceptual

difficulties by many scholars. Shukla(41) eases the complexity of NN

technical terms by explaining them in a simple and lucid way. Jha(16)

simplifies the big chunk of a Navya Nyāya Expression (NNE) using the

diagrams and explaining the concepts in a simple way. Bhatta(3), with

his uncomplicated way of explanation and using the diagram elabo-

rates the complex invariable concomitance topic. Ingalls(13), Shaw(39),

Mohanty(31), Matilal(28) tried to compare the NN concepts with the

concepts in the Western logic and provide logical representations for

various important concepts such as Vyāpti etc.

The other efforts concentrated on the understanding of the syntax of

NNEs. Kulkarni(20), trying to build a bridge between Navya-Nyāya

and western logic, analyses the NN in a computational perspective using

the modified version of Conceptual Graph. Varakhedi(45) showed the

relevance of NN for the Knowledge Representation. Ganeri(9) provides

the formal description of various primitive terms of NN. Patil(33) uses

the graphical rendering of expressions in his commentary of popular NN

text Tarkasaṃgraha. Kulakarni and Joshi(23) expounds the technical

language of NN in a remarkable way using pictures and graphs. Almost

13

every scholar used graphical representation in their texts to explain the

NN concepts.

We chose to concentrate only on the difficulty in the analysis due to

the linear structure of NNE. A single NNE runs into pages, which

is very hard for a human to comprehend2. In spite of a continuous

stream of characters involving arbitrarily long compounds, the cognitive

structure being described by such an expression helps a human mind

to understand them.

1.4.1 Parsing an NN Expression

NN Expressions are used to describe the cognitive structure

(jñānākāraḥ) as well as the physical world around us (sambaddha-

padārthaḥ). An NN Expression is a compound. A compound, in

Sanskrit, is written as a single word without any gap or hyphen in

between the components, with components joined together following

euphonic changes. This makes the processing of Sanskrit compounds

more challenging. Kumar et al. (26) describe the steps involved in

processing Sanskrit compounds and also discuss the associated compu-

tational complexity. The steps are

1. Splitting a compound into components.

This involves undoing euphonic transformations.

2. Analysing its constituent structure.

At this stage, a compound is analysed showing how the compo-

nents are grouped together.

3. Identifying relations between the components.

2You may refer to Miller’s article(29) for more information regarding the human
capacity of understanding.

14

Now the relation between the components thus grouped is made

explicit.

4. Providing a paraphrase of the compound.

Finally, a paraphrase of the compound is generated.

We illustrate these steps with two examples: an English one followed

by an NN Expression.

Example 1: Consider the long compound ‘lake water pollution re-

duction log’. We skip step 1 since the components here are already

split.

1. Constituency analysis for this compound is

((((lake-water)-pollution)-reduction)-log)

2. Relations between the components are now marked.

((((lake-water)T7-pollution)T6-reduction)T7-log)T6

Here T stands for Tatpuruṣa (an endo-centric) compound and

the numbers 6 and 7 indicate the genitive and the locative case

markers.

3. The paraphrase of this compound is generated.

Log of the reduction in pollution of water in the lake.

Example 2: Consider the following NN Expression which defines earth

as a substance with the smell as its characteristic property.

gandhatvāvacchinnagandhaniṣṭhādheyatānirūpitādhikaraṇatāvatī. (1)

1. After splitting the compound into its components, we get

gandhatva-avacchinna-gandha-niṣṭha-ādheyatā-nirūpita-

adhikaraṇatā∧vatī.

Here the components are separated by a hyphen and the

derivational suffix ‘-vatī’ is separated by a caret.

2. The constituency parse of this compound is

15

((((gandhatva-avacchinna)-((gandha-niṣṭha)-ādheyatā))-

nirūpita)-adhikaraṇatā)∧vatī

3. After identifying the relations between the components, we get

((((gandhatva-avacchinna)T3-((gandha-niṣṭha)T7-

ādheyatā)K)K-nirūpita)T3-adhikaraṇatā)K∧vatī

where K, T3 and T7 stand for karmadhāraya and tatpuruṣa com-

pounds with instrumental and locative case suffixes. These are

all endo-centric compounds, with a requirement of nominative,

instrumental and locative case suffixes during paraphrasing.

4. Finally, the paraphrase of this compound is

Sanskrit: gandhatvena avacchinnā, gandhe niṣṭhā yā ādheyatā,

tannirūpitā adhikaraṇatā∧vatī

Gloss: by_smellness delimited in_smell residing which

substratum-ness determined_by_that superstratum-ness pos-

sessing

English: An object which has superstratum-ness which is deter-

mined by the substratum-ness that is residing in the smell and is

delimited by the smell-ness.

In the traditional oral method of teaching, the teacher used to provide

the paraphrase of such long compounds starting from the innermost

compound, building in a bottom-up approach, joining one component

at a time, explaining the type of the compound. This would then

create a whole knowledge structure in the mind of a student. With the

advancement of new technology, now it is possible to represent the same

knowledge pictorially, which helps a modern student who relies more

on visual aids than memory to understand such complex compounds

easily.

16

‘A picture is worth 1000 words’ so goes an English idiom. The best

way to ease this complexity is by representing the linear structure in

a diagrammatical form. We see the use of diagrams to express NNEs

since long, as early as in 20th century. Vamacaraṇabhṭṭācārya(33) used

diagrams in his teachings. Later in the 60s, Wada(47) mentions that

Kitagawa started using diagrams to explain the NN theories. In 1987,

V.N.Jha(16) came up with a better solution. He started representing

the NNE in a unique diagrammatic form. This method simplified and

helped the Nyāya as well as other school students to understand the

structure of NN terminology. Later in 1994, Amba Kulkarni put her

efforts to build a bridge between NN and Western logic in her M.Tech

thesis(20). In this connection, she opted Conceptual Graph, a diagram-

matic representation scheme to show Navya-Nyāya’s linear structure in

a better way. Next Shrinivasa Varakhedi in his PhD thesis discussed

Knowledge Representation and used the diagrammatical representa-

tion method to show Navya-Nyāya structure(45). Toshihiro Wada(47)

also used diagrams extensively in his works. Tirumala Kulakarni and

Jaideep Joshi also used diagrams(23) to explain the complex NN terms

in an easier way.

But all these efforts are manual. Our goal of the research is to

build a software which renders an NNE diagrammatically, probably

automatically and if needed with some human inputs.

1.5 The organisation of thesis
In Chapter 1, we see the introduction of NN and the NNTL and the

usage of NNTL in other philosophies. We state the goal of this research

17

as well.

In Chapter 2, we introduce the first step, the segmentation of the NN

Expressions. We discussed all the earlier efforts and our present effort

in this part.

In Chapter 3, we introduce the Constituency Parsing of the NN Ex-

pressions. We elaborate the Context-free grammar written in a parser

generator called ‘Yacc’ and a lexical analyser ‘Lex’. How the parsing

works, how it is developed and what are the salient features of NNE

which helped us making this tool more automatic are elucidated in this

chapter.

In Chapter 4, we introduce the Type-identifier of the NN Expressions.

We analysed the compounds of NNE which helped out in improving

this tool. We discuss the development of this tool in detail.

In Chapter 5, we present the history of graphical representation used

in NN. Then we introduce the usage of the Conceptual Graphs for NN

Expressions. We explain the Conceptual Graphs renderer for an NNE.

In Chapter 6, we demonstrate all the modules packaged together in the

form of a software - Nyāyacitradīpikā with an example. We have put

the screen-shots of each step explaining the flow.

In Chapter 7, we conclude our research work and mention the future

work in this path.

1.6 Contribution of the thesis
The contribution of the thesis is the development of a computational

tool to ease the difficulty in understanding the NN Expressions. This

work has produced a semi-automatic tool to analyse the NNEs. This

tool can segment an NNE according to Nyāya domain, then parse it to

18

understand the proper semantic structure of it and then render it in a

graphical form. It also identifies the type of the compound in the NNE.

This work will help the students and teachers of NN to study NN in a

better way.

19

Chapter 2

Segmentation for NN

Expressions

The first step in understanding an NNE is to identify the components

in a compound. This process of identifying the components of a com-

pound or continuous language string is called Segmentation. Word

segmentation is important for languages like Sanskrit which is so much

influenced by the oral tradition that the word boundaries undergo eu-

phonic changes resulting into a continuous string of phonemes. The rich

productive morphology resulting into the formation of long compounds

aggravate the problem. There are significant efforts in this area in the

past. Huet(10), Huet and Goyal(11), Hyman(12), Mittal(30), Kumar

et al.(26), Natarajan and Charniak(32) have contributed efficaciously

to this field.

Hyman(12) describes a Finite State Transducer (FST) for the Paninian

sandhi rules. Huet(10) has discussed the segmentation in Sanskrit in

detail and has built an efficient Finite State Automata (FSA) based

20

segmenter. Mittal(30) describes two approaches; one using FST and

the other one based on Optimality Theory, by defining the posterior

probability function to choose among the valid splits. Kumar et al.(26)

used different posterior probability function and obtained better results.

Natarajan and Charniak(32) proposed sandhi splitting based on the

Dirichlet process.

The NN school of Indian tradition sees the culmination of productive

compound formation in the form of compounds running into pages.

The components of such compounds are typically formed with more

than one taddhita (secondary derivational) suffixes. Such compounds

also use the technical terms of NN.

Here is an example of linguistic expression in Navya-Nyāya (NNE)

involving a compound with nine components:

samavāyasambandha-avacchinna-gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā-nirūpita-adhikaraṇatāvatī.

For the sake of readability we show the components split by ‘-’, but

in the printed texts this is written as a single word with underlying

phonological changes as

samavāyasambandhāvacchinnagandhatvāvacchinnagandhaniṣṭhādheyatā

nirūpitādhikaraṇatāvatī.

21

All the efforts related to segmentation described earlier had focused on

general Sanskrit texts. But for much more complex and domain-specific

inputs like NNE, which is known for long compounds, use of technical

vocabulary and productive use of secondary derivational suffixes (tad-

dhita) a specially trained segmenter is needed.

We report below on our efforts in building a segmenter for NNE, in

two stages. First, we report our initial efforts using Heritage en-

gine, followed by building a special morphological analyser and its

use for segmentation in Sanskrit Computational Linguistics Platform

(SCL/

2.1 Preparation of Gold data

Āloka Tarkasaṅgraha Pañcalakṣaṇīsar-

vasvam Āloka

Pañcalakṣaṇīsarvasvam Math-

urānātha

Āloka

22

prātipadikam

Figure 2.1: FSA showing possible taddhita suffixes in NNE

2.2 Sanskrit Heritage Reader for NNEs

23

taddhita

tad-

dhita tal tva matup

taddhita

pada

Problems in Heritage segmenter

n n

24

Figure 2.2: First problem in Heritage segmenter

nirūpita avacchinna samānādhikaraṇa

ni-rūpita ava-chinna samāna-adhi-karaṇa

25

Figure 2.3: Second problem in Heritage segmenter

samānādhikaraṇa

samāna-adhi-karaṇa vyadhikaraṇa

vi-adhi-karaṇa

Naiyāyika

26

1

Added some technical terms of Navya-Nyāya to the lex-

icon.

vāraka, anumāpaka

Displaying words with their prefix as a single word.

nirūpita ni

rūpita

nirūpita

ni-rūpita

ni rūpita

Segments inchoative compound(cvi).

1I acknowledge here the Raman-Charpak Scholarship awarded by the CEFIPRA
for the duration March’15-June’15 that enabled me to work closely with Prof.
Gérard Huet at Inria, Paris.

27

adhikaraṇībhūtābhāvaḥ adhikaraṇībhūta-abhāvaḥ

2.3 Saṁsādhanī for NNEs

taddhita

Āloka

artha ātmaka pūrvaka

vidha kara in

fine compositi samāsa-uttarapada

taddhita

28

Figure 2.4: ifcs(in fine compositi or samāsa-uttarapada) found in NNEs

taddhita ka

kṛt

taddhita ka bahuvrīhi

dhūmahetuka

dhūmahetukā

in initio compositi samāsa-pūrvapada

puṁvadbhāva2

dhūmahetuka

2The condition for puṁvadbhāva is given in Paninian sūtra 6.3.42. It says -
In Karmadhāraya compound and in those cases where the second component of a
compound ends in a jātīya or deśīya suffix, the word in the feminine gender will
assume the bhāṣitapuṃska ‘expressed as a masculine’ form.

29

kṛt

ṇvul kta
3

pācakastrī

pācikāstrī

sūtra

puṃvatkarmadhārayajātīyadeśīyeṣu

sambandhāvacchinna sambandha

+avacchinna sambandha +ava +chinna

avacchinna

3The technical term for such base forms in Sanskrit is the one with puṁvadbhāva.

30

Algorithm of SCL-NN segmenter

u → v+w; f, f

4 u v

w

u

u

adhikaraṇatānirūpaka

adhikaraṇatā + nirūpaka
4This corpus developed by Sanskrit Consortium, which is manually tagged of

around 150K words and has around 30K examples of compound words. Refer -
“Statistical Constituency Parser for Sanskrit Compounds” of Amba Kulkarni and
Anil Kumar, ICON-2011.

31

adhikaraṇatā + anirūpaka

ān → ā + n

ā → ā + a

adhikaraṇatā + nirūpaka

adhikaraṇatā + anirūpaka

ā a+a a+ā ā+a

ā+ā

avacchinnakāryatā

avacchinnaka+āryatā

avacchinna+kāryatā

ka taddhita

32

pratiyogitānirūpaka

pratiyogitā+nirūpaka ān → ā+n pratiyog-

itā+anirūpaka ā → a+a pratiyogitā

prati+yogitā nirūpaka ni+rūpaka

puṁvadbhāva

niṣṭhā+ādheyatā niṣṭhādheyatā Puṁvadbhāva

niṣṭha+ādheyatā

Analysis of the Result

Precision and Recall

Āloka Tarkasaṅ-

graha

No of Solutions No of Cases
0-100 10
101-1,000 15
1,001-100,000 18
100,000 5
Time-out 1
Total 49

Table 2.1: Number of solutions of Sanskrit Heritage Splitter

33

No of Solutions No of Cases
0-5 14
6-10 11
11-100 18
101-1000 5
1000 1
Total 49

Table 2.2: Number of solutions of SCL-NN Splitter

Pañ-

calakṣaṇīsarvasvam

No of Solutions No of Cases Percentage
0-5 196 55.7
6-10 56 15.9
11-100 72 20.4
101-1000 13 3.6
1000 3 1
No Split 12 3.4
Total 352 100

Table 2.3: Number of solutions of SCL-NN Splitter

Correct Solution

34

Pañcalakṣaṇīsarvasvam

Position No. of Cases Percentage
1 42 86
2 2 4
3 4 8
7 1 2
Total 49 100

Table 2.4: Position of the correct solution in the Development data

Position No. of cases Percentage
1 264 75
2-5 42 11.9
6-10 6 1.7
11-100 7 2.0
101 2 0.6
No Split 12 3.4
No-correct solution 19 5.4
Total 352 100

Table 2.5: Position of the correct solution in the test data

2.4 Saṁsādhanī-NN Segmenter with con-

trolled lexicon

35

No of solutions Cases Percentage
1 340 96.59
2 12 3.40
Total 352 100

Table 2.6: Performance of Saṁsādhanī-NN splitter on test data

Pañcalakṣaṇīsarvasvam

36

37

Chapter 3

Constituency Parser for NNE

a-b-c

(a-(b-c)) ((a-b)-c)

sāmarthya

sāmarthya

38

3.1 Syntax of NN Expressions

Primitive Terms

ghaṭa bhūtala gandha

Abstract Functor

Relational Abstract Expressions

pitṛ

pitṛtva

putratva ādheyatā

adhikaraṇatā

Conditioning Operator

nirūpita

39

X-nirūpita-pitṛtva

Sentence-forming Operator

niṣṭha avacchinna

Negation Functor

abhāvaḥ

tva

ghaṭa-niṣṭha-ghaṭatvam

ghaṭa-bhedatvam ghaṭatvam

ghaṭa ghaṭa anuyogin

pratiyogin niṣṭha ghaṭa ghaṭatvam

ghaṭa-bheda tva bheda ghaṭa-

bheda
∧

∧

tva

40

ghaṭapaṭatvavat sādhyābhāvavat
∧

∧

vat tva
∧

primitive terms rela-

tional abstract expressions Condition-

ing operators sentence-forming operators

abstract functor

abstract functor

tva vat

Ganeri’s classification Our classification
Primitive term

Relational Abstract Expression Conceptual term
Negation functor
Abstract functor

Conditioning Operator Conceptual Relation
Sentence-forming Operator

Table 3.1: Difference of classification

41

3.2 Some salient features of NNEs

gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā gandhatva gandha

ādheyatā avacchinna

niṣṭha

anuyogin

pratiyogin

pratiyogin anuyogin

pratiyogin

anuyogin

gandha-niṣṭha-ādheyatā gandha pratiyogin ād-

heyatā anuyogin niṣṭha

((gandha-niṣṭha)-ādheyatā) (gandha-(niṣṭha-

ādheyatā)) Pratiyogin

Anuyogin

anuyogin

42

anuyogin

samavāyasambandha-avacchinna-gandha-niṣṭha-

ādheyatā anuyogin avacchinna ādheyatā

dravyatva-avacchinna-gandha-niṣṭha-ādheyatā anuyogin

avacchinna gandha

anuyogin

anuyogin

anuyo-

gin kth anuyogin

‘nirūpita’

pratiyogin nirūpita

anuyogin

pratiyogin

pratiyogin anuyogin nirūpita

43

3.3 Building a constituency Parser
anuyogin

pratiyogin

anuyogin

samavāyasambandha-avacchinna-gandhatva-avacchinna-gandha-

niṣṭha-ādheyatā-nirūpita-adhikaraṇatāvat-vastu

anuyogin

nirūpita ādheyatā pratiyogin

44

Figure 3.1: A screen-shot of the interface

adhikaraṇatā anuyogin

8 nd avacchinna anuyogin
th th

anuyogin

anuyogin gandha

gandha tva

pratiyogin gandha anuyogin tva

anuyogin rd gandha

45

Figure 3.2: A screen-shot of the interface after user-selection

ghaṭa-abhāva-vat-avṛttitvam

ghaṭa abhāva

ghaṭa-abhāva vat avṛttitvam

ghaṭa abhāva

pratiyogin ghaṭa anuyogin abhāva

anuyogin ghaṭa

anuyogin

pratiyogin

anuyogin

46

Chapter 4

Type-Identifier

4.1 Earlier efforts

gandhatvā-

vacchinna gandhatvena avacchinna ghaṭāb-

hāvaḥ ghaṭasya abhāvaḥ

Tatpuruṣa

“Development of Sanskrit Computational Tools and Sanskrit-Hindi

Machine Translation System”

47

4.2 Analysis of NNE compounds

Dvandva Bahupada-Bahuvrīhi Bahupada-Tatpuruṣha

avacchinna nirūpita niṣṭha

48

pūrvapada

uttarapada

ghaṭatva-avacchinna avacchinna

ghaṭatva-avacchinna-

ādheyatā ((ghaṭatva-avacchinna)-ādheyatā)

avacchinna ghaṭatva-

avacchinna

ādheyatā
1 niṣṭha

nirūpita

Semantics of compounds with avacchinna as one component

avacchinna

((X-avacchinna)-Y)

((ghaṭatva-avacchinna)-ādheyatā) ghaṭatvena-

avacchinnā yā sā ādheyatā

((X-

avacchinna)-Y)

1samastapada-garbhita-samāsa

49

Tṛtīyā-Tatpuruṣa

Viśeṣaṇa-pūrvapada-

Karmadhāraya

Semantics of compounds with niṣṭha as one component

niṣṭha

avacchinna

((X-niṣṭha)-Y)

((ghaṭa-niṣṭha)-ghaṭatvam) ghaṭe-niṣṭham yat

tat ghaṭatvam ((X-niṣṭha)-Y)

avacchinna yat tat

Saptamī Tatpuruṣa

Semantics of compounds with nirūpita as one component

nirūpita

((X-nirūpita)-Y)

((ādheyatā-nirūpita)-adhikaraṇatā)

ādheyatayā-nirūpitā yā sā adhikaraṇatā

((X-nirūpita)-Y)

50

Tṛtīyā-Tatpuruṣa

Appendix B

st nd

4.3 Context-free grammar

‘Chomsky hierarchy’

51

st nd

Appendix-B

NNE : compound
;

compound : Ppada ‘-’ Upada
;

Ppada : ‘(’ pada
;

Upada : pada ‘)’
;

pada : compound
| concept
;

Table 4.1: Context-free Grammar to identify the compound-types

pūrvapada

uttarapada

52

NNE : compound
;

compound : Ppada ‘-’ Upada
↑.type = f(Ppada.head, Upada.head)

;
Ppada : ‘(’ pada

↑.head = pada.head
;

Upada : pada ‘)’
↑.head = pada.head

;
pada : compound

↑.head = ↓.head
| concept

↑.head = ↓.head
;

Table 4.2: Production rules with attributes

((gandha-niṣṭha)-

ādheyatā) (gandha pūrvapada niṣṭha)

uttarapada

((gandha-niṣṭha) pūrvapada ādheyatā) uttarapada

gandha

ādheyatā niṣṭha

niṣṭha uttarapada

Saptamī-Tatpuruṣha pūr-

vapada Viśeṣaṇa-pūrvapada-

Karmadhāraya avacchinna uttarapada

Tṛtīyā-Tatpuruṣha pūrva-

pada Viśeṣaṇa-pūrvapada-Karmadhāraya

53

((gandha-niṣṭha)-ādheyatā)

Figure 4.1: Constituency parse corresponding to the grammar

gandha-

niṣṭha niṣṭha

((gandha-

niṣṭha)-ādheyatā) ādheyatā pūrvapada niṣṭha

54

Figure 4.2: Head-info computed according to the grammar - step 1

Figure 4.3: Head-info computed according to the grammar - step 2

55

((gandha-niṣṭha)T7-ādheyatā)

4.4 Analysis of the result

Viśeṣaṇa-pūrvapada-Karmadhāraya Tṛtīyā-Tatpuruṣha

Śaṣhṭhī-Tatpuruṣha Śaṣhṭhyartha-Bahuvrīhi Saptamī-

Tatpuruṣa Sambhāvanā-pūrvapada-Karmadhāraya Pañcamī-

Tatpuruṣha Samāhāra-Dvigu

4.5 Conclusion

56

Tag No. of cases
K1 283
Bs6 203
T6 186
T3 178
T7 74
K6 45
T5 13
Tds 7
Total 989

Table 4.3: Frequency distribution of identified compound types

57

Chapter 5

Graphical Representation

5.1 Earlier efforts

58

Figure 5.1: The graphs used by traditional scholars

59

5.2 What is Conceptual Graph?

Figure 5.2: An example of CG

60

se-

mantic networks Correlational nets

Dependency Graph

Figure 5.3: General form of CG

61

gandha-niṣṭha-gandhatvam

Figure 5.4: General form of an NNE

Graphviz 1

5.3 Conceptual Graphs for NN Expres-

sion

1www.graphviz.org

62

Sanskrit Rāma-nirūpita-pitṛtva∧vān Daśarathaḥ

Gloss

English

Sanskrit Rāma-niṣṭha-putratva-nirūpita-pitṛtva∧vān Daśarathaḥ

English

pitṛtva

putratva

niṣṭha (residing in), nirūpita

vān

nirūpita

63

Figure 5.5: Conceptual Graph for (4)

Figure 5.6: Conceptual Graph with position information for (4)

Sanskrit Rāmaḥ hastena brāhmaṇāya dhanam dadāti

Gloss

English

64

Sanskrit rāma-niṣṭha-kartṛtva-nirūpaka-hasta-niṣṭha-karaṇatva-

nirūpaka-brāhmaṇa-niṣṭha-sampradānatva-nirūpaka-dhana-niṣṭha-

karmatva-nirūpaka-dānakriyā

English

Figure 5.7: Conceptual Graph with position information for (6)

65

Sanskrit hasta-niṣṭha-karaṇatva-nirūpaka-brāhmaṇa-niṣṭha-

sampradānatva-nirūpaka-dhana-niṣṭha-karmatva-nirūpaka-dānakriyā-

anukūla-kṛti-vat-rāmaḥ

English

Figure 5.8: Conceptual Graph with position information for (7)

samavāyasambandha-avacchinna-gandhatva-avacchinna-

gandha-niṣṭha-ādheyatā-nirūpita-adhikaraṇatā∧vat-pṛthivī

66

avacchinna niṣṭha vat

nirūpita

gandhatva gandha adhikaraṇatā

ādheyatā

Naiyāyika

Sanskrit ghaṭa-niṣṭha-ādheyatā-nirūpita-adhikaraṇatā∧vat bhūtalam.

English

67

Figure 5.9: Conceptual Graph for (1)

2

Figure 5.10: Conceptual graph corresponding to (9)

3

Sanskrit bhūtala-niṣṭha-adhikaraṇatā-nirūpita-ādheyatā∧vān ghaṭaḥ

2ghaṭavadbhūtalam ‘pot-possessing-ground’.
3bhūtale ghaṭaḥ ‘pot on the ground’

68

English

vān niṣṭha

Figure 5.11: Conceptual graph corresponding to (10)

5.4 Compressed CGs

Figure 5.12: An instance of SCL graph

69

Figure 5.13: SCL graph corresponding to (10)

5.5 Grammar of NN Expressions

G

N

T

NNE

P

70

NNE : compound_concept
;

compound_concept : ‘(’ compound_relation ‘−’ concept_term ‘)’
;

compound_relation | ‘(’ concept_term ‘−’ relation_term ‘)’
;

concept_term : concept
| NNE
;

relation_term : relation
;

Table 5.1: Production rules

tva

niṣṭha avacchinna

nirūpita vṛtti āśraya

avacchedaka nirūpaka

5.6 NN Expressions to Conceptual

Graphs

paryāpti

71

NNE : compound_concept
↑.head = ↓.head

;
compound_concept : ‘(’ compound_relation ‘−’ concept_term ‘)’

↑.head = concept_term.head
establish a link between the head of the
compound_relation to the head of the concept_term

;
compound_relation | ‘(’ concept_term ‘−’ relation_term ‘)’

↑.head = relation_term.head
establish a relation between the head of the
concept_term to the head of the relation_term

;
concept_term : concept

↑.head = ↓.position
draw a concept node

| NNE
↑.head = ↓.head

;
relation_term : relation

↑.head = ↓.position
draw a relation node

;

Table 5.2: Production rules with attributes

intrinsic

concept relation

72

compound_relation compound_concept

5.6.1 An illustration

<< > >

position label

niṣṭha

73

Figure 5.14: Constituency parse corresponding to the grammar

Compound_Concept
XXXXX

�����
Compound_Relation

HHH
���

gandha niṣṭha

ādheyatā

Figure 5.15: Compact parse - 1

74

Compound_Concept
XXXXX

�����
Compound_Relation

aaa
!!!

concept

gandha

relation

niṣṭha

concept

ādheyatā

Figure 5.16: Compact parse with position information

[
Position = 1
Label = gandha

]
Position = 2
Label = niṣṭha
Left = 1
Right = ?


[

Position = 3
Label = ādheyatā

]
PPPP

����

HHH
���

gandha niṣṭha

ādheyatā

Figure 5.17: Compact parse

Figure 5.18: concept node acquires the ‘head’ position from child

75

Figure 5.19: relation term inherits the ‘head’ position

Figure 5.20: relation node inherits the position of 2nd relata

76

nd

niṣṭha

sādhyābhāvādhikaraṇanirūpita nirūpita

sādhya abhāva adhikaraṇa

NNE : compoundC

;

compoundC : '<' compoundR '-' concept_term '>'

| '<' concept_term '-' concept_term '>'

;

compoundR : '<' concept_term '-' rel_term '>'

77

;

concept_term : NNE

| concept

;

rel_term : relation

;

Figure 5.21: CG generated by modified grammar

78

Chapter 6

Nyāyacitradīpikā

Nyāyacitradīpikā

Nyāyacitradīpikā

anuyogin

anuyogin

79

Figure 6.1: Homepage of Nyāyacitradīpikā with two modes

Nyāyacitradīpikā

80

Figure 6.2: Segmented output from SCL segmenter

pṛthivī lakṣhaṇa

81

Figure 6.3: user interface to select anuyogin

anuyogin

anuyogin

82

Figure 6.4: Completely disambiguated NNE

anuyogin

83

Figure 6.5: Conceptual Graph (CG) of the selected NNE

84

Figure 6.6: Compressed CG of the selected NNE

85

Figure 6.7: Identified compound types of the selected NNE

86

Chapter 7

Conclusion

87

Future directions

88

Appendices

89

A - Table of Semantic classifications

91

92

B - Relation terms along with the possible

type of the compound

93

94

95

96

97

C - Programs of all the tools

Segmenter program

#!/usr/bin/perl

my $myPATH="/home/arjun/scl";

use GDBM_File;

tie(%LEX1,GDBM_File,"$myPATH/NN/segmenter/S1.dbm",

GDBM_READER,0644) || die "can't open S1.dbm ";

tie(%LEX2,GDBM_File,"$myPATH/NN/segmenter/S2.dbm",

GDBM_READER,0644) || die "can't open S2.dbm ";

tie(%LEX3,GDBM_File,"$myPATH/NN/segmenter/S3.dbm",

GDBM_READER,0644) || die "can't open S3.dbm ";

tie(%LEX4,GDBM_File,"$myPATH/NN/segmenter/S4.dbm",

GDBM_READER,0644) || die "can't open S4.dbm ";

require "$myPATH/NN/segmenter/nyAya_words.pl";

$Max_Word_Size=25;

while($in = <STDIN>){

chomp($in);

$found = "";

%SPLIT = ();

98

%SPLIT_CHECKED = ();

($ans, $found) = split("#", &split_recursive_sandhi($in,0,""));

$ans = &prioritise($ans);

@ans = split("/",$ans);

$ans_found = 0;

foreach $a (@ans) {

print $a,"\n";

$ans_found++;

}

if(!$ans_found) { print "No answer found \n";}

elsif($ans_found == 1) { print "One answer found \n";}

else { print "$ans_found answers found\n";}

}

sub split_recursive_sandhi{

my($in,$absolute_position,$found) = @_;

my($wrd1,$wrd2,$i,$k,$final_ans,$ans,@t,$t,$len,

$pUrva,$str2Bmatched,$uttara,$fld1,$fld2,$fld3,

@ans,$local_found,$m,$position,

$local_ans,$lex,$tmp,$wrd2_position,$l);

$len = length($in);

$final_ans = "";

if($len < $Max_Word_Size) { $i = $len;}

else {$i = $Max_Word_Size;}

99

$max_window_size = 4;

while($i>0) {

$local_found = $found;

for($k=$max_window_size; $k>=1; $k--){

if($i + $k < $len) {

$local_ans = "";

if($debug) {print "k = $k\n";}

$in =~ /^(.{$i})(.{$k})(.*)$/;

$pUrva = $1;

$str2Bmatched = $2;

$uttara = $3;

$lex = "LEX".$k;

if(${$lex}{$str2Bmatched}) {

@ans = split(/#/,${$lex}{$str2Bmatched});

for ($m = 0; $m <= $#ans; $m++){

if($debug) { print "sandhi Rule: $ans[$m]\n";}

($fld1,$fld2,$fld3) = split(/,/,$ans[$m]);

$tmp=$in;

$tmp =~ s/^$pUrva$str2Bmatched$uttara$/$pUrva$fld1 $fld2$uttara/;

($wrd1, $wrd2) = split(/ /,$tmp);

$position = $absolute_position+length($pUrva).",".$fld3;

$wrd2_position = $absolute_position+length

($pUrva)+length($str2Bmatched)-length($fld2)+1;

100

if((!&split_boundary_pos($position,$found)

&& !&from_non_pUrvapaxa_list($wrd2)

&& !&from_non_pUrvapaxa_list($wrd1))){

if((length($wrd1) < $Max_Word_Size)

&& !$MO_CHECKED{$wrd1}){

if($debug) {print "Calling morph for $wrd1\n";}

$MO{$wrd1} = &get_morph_ana($wrd1);

if($debug) {print "$MO{$wrd1}\n";}

$MO_CHECKED{$wrd1} = 1;

}

if((length($wrd2) < $Max_Word_Size)

&& !$MO_CHECKED{$wrd2}){

if($debug) {print "Calling morph for $wrd2\n";}

$MO{$wrd2} = &get_morph_ana($wrd2);

if($debug) {print "$MO{$wrd2}\n";}

$MO_CHECKED{$wrd2} = 1;

}

if($MO{$wrd1} && $MO{$wrd2}) {

$local_ans .= "/".$wrd1."{$fld3}".$wrd2;

if($position ne "") {

$local_found = &add_position($local_found,$position);

}

}

elsif($MO{$wrd1}) {

if(!$SPLIT_CHECKED{$wrd2}) {

101

($ans,$sub_found) = split(/#/,

&split_recursive_sandhi($wrd2,$wrd2_position-1,$found));

} elsif($SPLIT{$wrd2})

{ $ans = $SPLIT{$wrd2};}

else {$ans = "";}

if($ans ne "") {

if($position ne "") {

$local_found =

&add_position($local_found,$position);

}

@sub_found = split(/#/,$sub_found);

foreach $l (@sub_found) {

if($l ne "") {

$local_found =

&add_position($local_found,$l);

}

}

$ans =~ s/\/\//\//g;

$ans =~ s/^\///g;

@t = split("/",$ans);

foreach $t (@t) {

$local_ans .= "/".$wrd1."{$fld3}".$t;

}

}

102

}

}

}

}

if($local_ans) {

$final_ans .= "/".$local_ans;

}

}

}

$found = $local_found;

$found =~ s/^#//g;

$i--;

$SPLIT{$in} = $final_ans;

$SPLIT_CHECKED{$in} = 1;

$final_ans =~ s/\/\//\//g;

$final_ans =~ s/^\///g;

$final_ans."#".$found;

}

1;

sub get_morph_ana{

my($word1) = @_;

my($ans);

system("$myPATH/NN/segmenter/client_splitter.sh

103

$word1 | grep . | grep -v '*'> /tmp/SKT_TEMP/tt");

if(-s "/tmp/SKT_TEMP/tt") { $ans = 1;} else { $ans = 0;}

system("rm /tmp/SKT_TEMP/tt");

return $ans;

}

1;

sub split_boundary_pos{

my($start,$found) = @_;

my(@found,$f);

@found = split(/#/,$found);

foreach $f (@found) {

if($f eq $start) {

return 1;}

}

return 0;

}

1;

sub add_position {

my($str,$pos) = @_;

$str =~ s/\-/:/g;

$pos =~ s/\-/:/g;

$str =~ s/\+/;/g;

$pos =~ s/\+/;/g;

if(($str !~ /^$pos#/) &&

($str !~ /^$pos$/) &&

($str !~ /#$pos#/) &&

($str !~ /#$pos$/)){

104

$str .= "#".$pos;

}

$str =~ s/:/-/g;

$str =~ s/;/+/g;

$str;

}

1;

sub from_non_pUrvapaxa_list {

my($w) = @_;

if($w eq "ava-") { return 1;}

if($w eq "avacCinnA-") { return 1;}

if($w eq "anu-") { return 1;}

if($w eq "Cexa-") { return 1;}

if($w eq "Cexaka-") { return 1;}

if($w eq "CexakawA-") { return 1;}

if($w eq "Cexakawva-") { return 1;}

if($w eq "Cexya-") { return 1;}

if($w eq "CinnA-") { return 1;}

if($w eq "nirUpiwA-") { return 1;}

if($w eq "niRTA-") { return 1;}

if($w eq "nis-") { return 1;}

if($w eq "paryApwA-") { return 1;}

if($w eq "pra-") { return 1;}

if($w eq "prawiyogikA-") { return 1;}

if($w eq "rUpiwa-") { return 1;}

if($w eq "SAlI-") { return 1;}

105

if($w eq "Taka-") { return 1;}

if($w eq "TakA-") { return 1;}

The viSeRaNa (BARiwa puMlinga, undergoes puMswva

in bahuvrIhi and karmaXAraya compounds

if($w eq "viSeRaNA-") { return 1;}

if($w =~ /^akawA/) { return 1;}

if($w =~ /^araN/) { return 1;}

if($w =~ /^avaw/) { return 1;}

if($w =~ /^AraN/) { return 1;}

if($w =~ /^Cinna/) { return 1;}

if($w =~ /^Cexaka/) { return 1;}

if($w =~ /^CexakI/) { return 1;}

if($w =~ /^iRyakawA/) { return 1;}

if($w =~ /^kawA/) { return 1;}

if($w =~ /^raN/) { return 1;}

return 0;

}

sub prioritise{

my($ans) = @_;

my($low,$high,@ans,$oneans,$word,@words,$count,$max_count,$i,@ANS);

@ans = split("/",$ans);

$max_count = 0;

foreach $oneans (@ans) {

$curr_ans = $oneans;

$oneans =~ s/[][a-zA-Z]+[]*;.*//;

106

@words = split(/ /,$oneans);

$count = 0;

foreach $word (@words) {

if($NYAYA_words{$word}) { $count++;}

}

$ANS[$count] .= "/". $curr_ans;

if($max_count < $count) { $max_count = $count;}

}

$ans = "";

foreach ($i=$max_count; $i >= 0 ; $i--){

if($ANS[$i] ne "") { $ans .= "/". $ANS[$i];}

}

$ans =~ s/\/\/+/\//g;

$ans =~ s/^\///;

$ans;

}

1;

107

Constituency Parser program

Lex program

%{

#include "nneparse.tab.h"

%}

%option noinput

%option nounput

%%

niRTa|vqwwi|avacCinna|nirUpiwa|nirUpaka|avacCexaka|

ASraya|SAl[iI]|vaw|vawI|vawyaH|vAn|ka{strcpy

(yylval.nodeinfo.token,yytext);return sambanXaH;}

[^-\n]+ {strcpy(yylval.nodeinfo.token,yytext);return concept;}

\n { return '\n';}

\-{ return '-';}

%%

Yacc program

%union {

struct node{

char token[1000];

} nodeinfo;

}

%{

#include <stdlib.h>

108

#include <stdio.h>

#include <string.h>

struct termstruct{

char word[1000];

char type[10];

char pratiyogin[10];

char anuyogin[100];

} terminfo[100];

int counter,i,relation_found;

char tmp[100];

extern int debug;

int yylex();

int yyerror();

%}

%token <nodeinfo> sambanXaH

%token <nodeinfo> concept

%type <nodeinfo> terms

%type <nodeinfo> TC

%type <nodeinfo> TR

%%

examples: example

| examples example

109

;

example: terms '\n' {

for(i=1;i<counter;i++){

printf("@%s\t",terminfo[i].type);

printf("%s\t",terminfo[i].word);

printf("%d\t",i);

//if(!strcmp(terminfo[i].type,"relation")){

if(strcmp(terminfo[i].pratiyogin,"")){

printf("%s\t",terminfo[i].pratiyogin);

} else { printf("-\t");}

//if(!strcmp(terminfo[i].type,"relation")){

if(strcmp(terminfo[i].anuyogin,"")){

printf("%s\n",terminfo[i].anuyogin+1);

// first char is ',', to ignore it,

we start printing from +1 position

} else { printf("-\n");}

}

}

;

terms: terms '-' TR

| terms '-' TC

| TC

;

TC: concept { strcpy(terminfo[counter].word,$1.token);

strcpy(terminfo[counter].type,"concept");

sprintf(tmp,"%d",counter);

for(i=1;i<counter;i++){

110

if(!strcmp(terminfo[i].type,"relation")){

strcat(terminfo[i].anuyogin,",");

strcat(terminfo[i].anuyogin,tmp);

}

}

if(!strcmp(terminfo[counter-1].type,"concept")) {

sprintf(tmp,"%d",counter-1);

strcat(terminfo[counter-1].pratiyogin,tmp);

}

counter++;

}

;

TR: sambanXaH {

strcpy(terminfo[counter].word,$1.token);

strcpy(terminfo[counter].type,"relation");

sprintf(tmp,"%d",counter-1);

strcat(terminfo[counter].pratiyogin,tmp);

counter++;

}

;

%%

#include <stdio.h>

#include <stdlib.h>

int debug;

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);

111

return (0);

}

int main(int argc, char *argv[]){

counter = 1;

for(i=1;i<100;i++){

strcpy(terminfo[i].anuyogin,"");

strcpy(terminfo[i].pratiyogin,"");

}

debug = 0;

if(argc > 1) {

if(index(argv[1],'D')) debug=1;

}

yyparse();

return 1;

}

112

Graph renderer program

Lex program

%{

#include "nne2diagram.tab.h"

int type;

%}

%option noinput

%option nounput

%x LEVEL

%%

niRTa {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

vqwwi {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

avacCinna {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

nirUpiwa {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

nirUpaka {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

avacCexaka {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

ASraya {strcpy(yylval.nodeinfo.token,yytext);return sambanXaH;}

SAl[iI]|vaw|vawI|vawyaH|vAn

{strcpy(yylval.nodeinfo.token,"vaw");return sambanXaH;}

ka {strcpy(yylval.nodeinfo.token,"ka");return sambanXaH;}

aBexa {strcpy(yylval.nodeinfo.token,"aBexa");return sambanXaH;}

[a-zA-Z]+wva

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=3;

return concept;}

[a-zA-Z]+wA

113

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=3;

return concept;}

[a-zA-Z]+

{strcpy(yylval.nodeinfo.token,yytext);yylval.nodeinfo.level=1;

return concept;}

niRTa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ; BEGIN LEVEL;}

vqwwi:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

avacCinna:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

nirUpiwa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

nirUpaka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

avacCexaka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH ;BEGIN LEVEL;}

ASraya:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=sambanXaH;BEGIN LEVEL;}

114

SAl[iI]:|vaw:|vawI:|vawyaH:|vAn:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"vaw"); type=sambanXaH ;BEGIN LEVEL;}

ka:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"ka"); type=sambanXaH ;BEGIN LEVEL;}

aBexa:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,"aBexa"); type=sambanXaH ;BEGIN LEVEL;}

[a-zA-Z]+wva:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

[a-zA-Z]+wA:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

[a-zA-Z]+:/[0-9]

{yytext[yyleng-1] = '\0';

strcpy(yylval.nodeinfo.token,yytext); type=concept; BEGIN LEVEL;}

<LEVEL>[0-9]+

{yylval.nodeinfo.level=atoi(yytext); BEGIN INITIAL; return type;}

\n { return '\n';}

\<{ return '<';}

\>{ return '>';}

\-{ return '-';}

%%

115

Yacc program

%union {

struct node{

char token[1000];

int level;

int next_level;

int head;

} nodeinfo;

}

%{

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct termstruct{

char word[1000];

char type[10];

int level;

} terminfo[100];

struct relstruct{

char relname[100];

int from;

int to;

int level;

} relinfo[200];

116

int T_counter;

int rel_counter;

int i,j,k,found,min,max;

extern int debug, cg_or_real;

extern int getmin(), getmax();

extern char level[10][100];

int yylex();

int yyerror();

%}

%token <nodeinfo> sambanXaH

%token <nodeinfo> concept

%type <nodeinfo> NNE

%type <nodeinfo> compoundC

%type <nodeinfo> compoundR

%type <nodeinfo> concept_term

%type <nodeinfo> rel_term

%%

examples: example

| examples example

;

example: NNE '\n' {

printf("@digraph @G\n{\n");

printf("@labelfloat=@true;\n");

max = 1;

for(i=1;i<=T_counter;i++){

117

j = terminfo[i].level;

if (j > max) max = j;

sprintf(level[j],"%s

@Node%d",level[j],i);

}

for(i=1;i<T_counter;i++){

printf("@Node%d\t[@label=\"%s

(%d)\" ",i,terminfo[i].word,i);

printf("@fontcolor=\"@red\"

@shape = \"@box\"]\n");

}

for(i=1;i<rel_counter;i++){

if(cg_or_real == 2) {

printf("@Node%d -> @Node%d

[@label=%s]\n",relinfo[i].from,

relinfo[i].to,relinfo[i].relname);

}

if(cg_or_real == 1) {

printf("@Node%da\t[@label=\"%s

\" ",i,relinfo[i].relname);

printf("@fontcolor=\"@blue\"

@shape = \"@oval\"]\n");

printf("@Node%d -> @Node%da \n",

relinfo[i].from,i);

printf("@Node%da -> @Node%d \n",

i,relinfo[i].to);

j = relinfo[i].level;

118

if (j > max) max = j;

sprintf(level[j],"%s @Node%da",

level[j],i);

}

}

for(j=1;j<=max;j++){

printf("%d [@style=@invis]\n",j);

}

printf("{ ");

for(j=1;j<max;j++){

printf("%d ->",j);

}

printf("%d",j);

printf(" [@style=@invis]\n}\n");

for(j=1;j<=max;j++){

printf("{@rank=@same %d %s}\n",j,

level[j]);

}

printf("@rankdir=@TB}\n");

T_counter=1;

rel_counter=1;

}

;

NNE: compoundC {

119

$$.head = $1.head;

$$.level = $1.level;

}

;

compoundC: '<' compoundR '-' concept_term '>' {

relinfo[rel_counter].from = $2.head;

relinfo[rel_counter].to = $4.head;

strcpy(relinfo[rel_counter].relname,$2.token);

relinfo[rel_counter].level=$2.level;

rel_counter++;

$$.head = $4.head;

$$.level = $4.level;

}

| '<' concept_term '-' concept_term '>' {

relinfo[rel_counter].from = $2.head;

relinfo[rel_counter].to = $4.head;

strcpy(relinfo[rel_counter].relname,"@R");

rel_counter++;

$$.head = $4.head;

$$.level = $4.level;

}

;

compoundR: '<' concept_term '-' rel_term '>'{

$$.head = $2.head;

strcpy($$.token,$4.token);

120

$$.level = $4.level;

}

;

concept_term: NNE {

$$.head = $1.head;

if(debug) { printf("NNE\n");

fflush(stdout);}

}

| concept {

strcpy(terminfo[T_counter].word,$1.token);

strcpy(terminfo[T_counter].type,"concept");

terminfo[T_counter].level=$1.level;

$$.level = terminfo[T_counter].level;

$1.head = T_counter;

T_counter++;

$$.head = $1.head;

if(debug) {printf("concept_term = %s

pos = %d type = concept\n",

$1.token,T_counter);fflush(stdout);}

}

;

rel_term: sambanXaH {

strcpy($$.token,$1.token);

$$.head = $1.head;

$$.level = $1.level;

121

if(debug) {printf("relation = %s

pos = %d type = relation\n",

$1.token,T_counter);fflush(stdout);}

}

;

%%

#include <stdio.h>

#include <stdlib.h>

int debug;

int cg_or_real;

char level[10][100];

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);

return (0);

}

int main(int argc, char *argv[]){

T_counter = 1;

rel_counter = 1;

min = 1;

max = 3;

debug = 0;

cg_or_real = 2;

/* By default it produces a graph that is close to reality.

cg(C) = 1; real(R) = 2 */

/* Usage: nne2diagram.out [DCR] */

122

if(argc > 1) {

if(index(argv[1],'D')) debug=1;

if(index(argv[1],'C')) cg_or_real=1;

if(index(argv[1],'R')) cg_or_real=2;

}

yyparse();

return 1;

}

int getmin(int a,int b){

if(b > 0) {

if(a > b) { a = b;}

}

return a;

}

int getmax(int a,int b){

if(b > 0) {

if(a < b) { a = b;}

}

return a;

}

123

Type-identifier programs

Lex program

%{

#include "typeidentifier.tab.h"

%}

%option nounput

%option noinput

%%

[a-zA-Z]+ {strcpy(yylval.padainfo.word,yytext);

return concept;}

\n { return '\n';}

\<{ return '<';}

\>{ return '>';}

\-{ return '-';}

%%

Yacc program

%union {

struct node{

char word[1000];

char head[100];

} padainfo;

}

124

%{

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

char type[10];

int yylex();

int yyerror();

%}

%token <padainfo> niRTa

%token <padainfo> vqwwi

%token <padainfo> nirUpiwa

%token <padainfo> nirUpaka

%token <padainfo> avacCinna

%token <padainfo> avacCexaka

%token <padainfo> aBAva

%token <padainfo> concept

%type <padainfo> compound

%type <padainfo> Ppada

%type <padainfo> Upada

%type <padainfo> pada

%type <padainfo> example

%%

examples: example

| examples example

125

;

example: compound '\n' { printf("%s \n",$1.word); }

;

compound : Ppada '-' Upada {

strcpy(type,"@R");

if(!strcmp($1.head,"niRTa")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwi")) strcpy(type,"@K1");

if(!strcmp($1.head,"nirUpiwa")) strcpy(type,"@K1");

if(!strcmp($1.head,"nirUpaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"avacCinna")) strcpy(type,"@K1");

if(!strcmp($1.head,"avacCexaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"rahiwa")) strcpy(type,"@T6");

if(!strcmp($1.head,"eka")) strcpy(type,"@Tds");

if(!strcmp($1.head,"xvi")) strcpy(type,"@Tds");

if(!strcmp($1.head,"wri")) strcpy(type,"@Tds");

if(!strcmp($1.head,"cawur")) strcpy(type,"@Tds");

if(!strcmp($1.head,"paFca")) strcpy(type,"@Tds");

if(!strcmp($1.head,"Rat")) strcpy(type,"@Tds");

if(!strcmp($1.head,"sapwa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"aRta")) strcpy(type,"@Tds");

if(!strcmp($1.head,"nava")) strcpy(type,"@Tds");

if(!strcmp($1.head,"xaSa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"Sawa")) strcpy(type,"@Tds");

if(!strcmp($1.head,"sahasra")) strcpy(type,"@Tds");

if(!strcmp($1.head,"viXa")) strcpy(type,"@K1");

126

if(!strcmp($1.head,"Awmaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"ukwa")) strcpy(type,"@K1");

if(!strcmp($1.head,"janya")) strcpy(type,"@T5");

if(!strcmp($1.head,"anukUla")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXAraka")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAryaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAraNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRyaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRaNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"prakAraka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargika")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayika")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRyaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRaNaka")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwika")) strcpy(type,"@K1");

if(!strcmp($1.head,"sAmAnyIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"aBAvIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNIya")) strcpy(type,"@K1");

if(!strcmp($1.head,"prawiyogiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"anuyogiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXeyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"AXArawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"aXikaraNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"kAryawAka")) strcpy(type,"@K1");

127

if(!strcmp($1.head,"kAraNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viSeRaNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"prakArawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"saMsargiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"viRayiwAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRyawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"lakRaNawAka")) strcpy(type,"@K1");

if(!strcmp($1.head,"vqwwiwAka")) strcpy(type,"@K1");

if(!strcmp($3.head,"niRTa")) strcpy(type,"@T7");

if(!strcmp($3.head,"vqwwi")) strcpy(type,"@T7");

if(!strcmp($3.head,"nirUpiwa")) strcpy(type,"@T3");

if(!strcmp($3.head,"nirUpaka")) strcpy(type,"@T6");

if(!strcmp($3.head,"avacCinna")) strcpy(type,"@T3");

if(!strcmp($3.head,"avacCexaka")) strcpy(type,"@T6");

if(!strcmp($3.head,"aBAva")) strcpy(type,"@T6");

if(!strcmp($3.head,"Bexa")) strcpy(type,"@T6");

if(!strcmp($3.head,"Binna")) strcpy(type,"@T5");

if(!strcmp($3.head,"rahiwa")) strcpy(type,"@T3");

if(!strcmp($3.head,"sAmAnAXikaraNyam")) strcpy(type,"@T6");

if(!strcmp($3.head,"Awmaka")) strcpy(type,"@Bs6");

128

if(!strcmp($3.head,"janya")) strcpy(type,"@T5");

if(!strcmp($3.head,"ukwa")) strcpy(type,"@T7");

if(!strcmp($3.head,"Axi")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"sambanXa")) strcpy(type,"@K4");

if(!strcmp($3.head,"svarUpa")) strcpy(type,"@T6");

if(!strcmp($3.head,"pakRaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"sAXyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"hewuka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prawiyogika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"anuyogika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXeyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXAraka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"aXikaraNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAryaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAraNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRaNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prakAraka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRyaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRaNaka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"vqwwika")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prawiyogiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"anuyogiwAka")) strcpy(type,"@Bs6");

129

if(!strcmp($3.head,"AXeyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"AXArawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"aXikaraNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAryawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"kAraNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viSeRaNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"prakArawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"saMsargiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"viRayiwAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRyawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"lakRaNawAka")) strcpy(type,"@Bs6");

if(!strcmp($3.head,"vqwwiwAka")) strcpy(type,"@Bs6");

sprintf($$.word,"%s-%s%s",$1.word,$3.word,type);

strcpy($$.head,$3.head);

}

;

Ppada : '<' pada {sprintf($$.word,"<%s",$2.word);

strcpy($$.head,$2.head);}

;

Upada : pada '>'{sprintf($$.word,"%s>",$1.word);

strcpy($$.head,$1.head);}

;

130

pada : compound { strcpy($$.word,$1.word);

strcpy($$.head,$1.head);}

| concept { strcpy($$.word,$1.word);

strcpy($$.head,$1.word);}

;

%%

#include <stdio.h>

#include <stdlib.h>

int yyerror(char *s) {

fprintf(stderr,"%s\n",s);

return (0);

}

int main(int argc, char *argv[]){

yyparse();

return 1;

}

131

Bibliography

132

133

134

135

136

	Title Page
	Declaration
	Certificate
	Acknowledgements
	Table of Contents
	List of Figures
	Dissertation related papers presented at Conferences
	Overview
	Introduction
	Navya-Nyāya
	Influence of Navya-Nyāya Technical Language
	Motivation and Goal of research
	Parsing an NN Expression

	The organisation of thesis
	Contribution of the thesis

	Segmentation for NN Expressions
	Preparation of Gold data
	Sanskrit Heritage Reader for NNEs
	Saṁsādhanī for NNEs
	Saṁsādhanī-NN Segmenter with controlled lexicon

	Constituency Parser for NNE
	Syntax of NN Expressions
	Some salient features of NNEs
	Building a constituency Parser

	Type-Identifier
	Earlier efforts
	Analysis of NNE compounds
	Context-free grammar
	Analysis of the result
	Conclusion

	Graphical Representation
	Earlier efforts
	What is Conceptual Graph?
	Conceptual Graphs for NN Expression
	Compressed CGs
	Grammar of NN Expressions
	NN Expressions to Conceptual Graphs
	An illustration

	Nyāyacitradīpikā
	Conclusion
	Appendices
	Bibliography

