Wiebke Petersen

Institute of Language and Information University of Düsseldorf, Germany petersew@uni-duesseldorf.de

3rd Int. Sanskrit Computational Linguistics Symposium, 15.-17. January 2009

अइउण्। ऋऌक्। एओङ्। ऐऔच्। हयवरट्। लण्। ञमङणनम्। झभञ्। घढधष्। जबगडदश्। खफछठथचटतव्। कपय्। शषसर्। हल्।

Phonological Rules

Introduction

•0000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C_D}$$

example: final devoicing

Phonological Rules

Introduction

•0000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

example: final devoicing

$$\begin{bmatrix} + & \mathsf{consonantal} \\ - & \mathsf{nasal} \\ + & \mathsf{voiced} \end{bmatrix} \rightarrow \begin{bmatrix} + & \mathsf{consonantal} \\ - & \mathsf{nasal} \\ - & \mathsf{voiced} \end{bmatrix} / \underline{\hspace{0.5cm}} \sharp$$

00000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- analysis: [ik]_{gen}[yaṇ]_{nom}[ac]_{loc}
- modern notation: [iK] \rightarrow [yN]/_ [aC]

00000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pānini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yanaci (इको यणचि)
- analysis: [ik]gen[yan]nom[ac]loc
- modern notation: $[iK] \rightarrow [yN]/$ [aC]

Pāṇini faced the problem of giving a linear representation of the nonlinear system of sound classes.

A similar problem occurs in ...

00000

00000

Pāṇini's solution: Śivasūtras

Introduction

1	l _	i				N.I
Ι.	а	ı	u			ΙŅ
2.				ŗ	ļ.	K
3.		е	0			Ņ K Ņ
4.		ai	au			C
1. 2. 3. 4. 5. 6.	h	У	V	r		Ņ Ņ
6.						Ņ
7.	ñ	m	'n	ņ	n	Μ
8. 9.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	Ş	S		R
14.	h		-			L
	l					

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's solution: Śivasūtras

Introduction

1.	а	i	u			Ņ
2.				ŗ	ļ	K N C
2. 3. 4. 5.		е	0			Ň
4.		ai	au			
5.	h	У	V	r		Ţ Ņ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ṣ Ś
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	ķ	S		R
14.	h					L

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

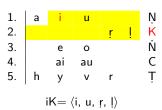
Pāṇini's solution: Śivasūtras

Introduction

1.	a	i	u			Ņ
2.				ŗ	į	K
3.		е	0			Ň
2. 3. 4. 5.		ai	au			Ň C Ţ Ņ
5.	h	У	V	r		Ţ
6.					- 1	Ņ
7. 8. 9.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	Ş	S		R
14.	h					L

anubandha

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। kapay | śasasar | hal |


Pratyāhāras

```
1. | a i u Ņ
2. | r ! K
3. | e o Ŋ
4. | ai au C
5. | h y v r Ţ
```

Pratyāhāras

Pratyāhāras

Introduction

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- $\bullet \ \langle i, \ u, \ r, \ l \rangle \rightarrow \langle y, \ v, \ r, \ l \rangle / _ \langle a, \ i, \ u, \ r, \ l, \ e, \ o, \ ai, \ au \rangle$

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/[aC]$
- $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / (a, i, u, r, l, e, o, ai, au)$

General problem of S-sortability

Introduction

Given a set of classes, order the elements of the classes (without duplications) in a linear order (in a list) such that each single class forms a continuous interval with respect to that order.

- The target orders are called S-orders
- A set of classes is S-sortable if it has an S-order

Note that every S-order becomes a *Śivasūtra*-alphabet (S-alphabet) by adding a marker (*anubandha*) behind each element.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

The set of classes:

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

Introduction

S-sortable example

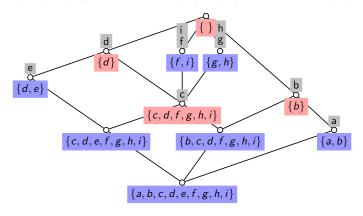
The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

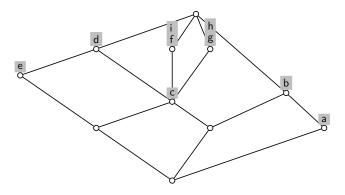
non-S-sortable example


The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

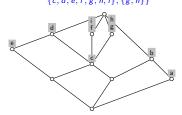
The set of classes:

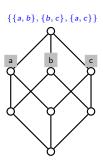

$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}$

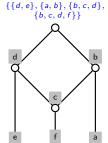
concept lattice

Visualize relations

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}$$



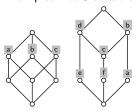

concept lattice


Visualize relations

Introduction

$$\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$

Introduction

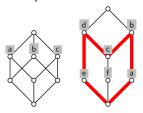

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes is Hasse-planar.
- 3 The Ferrers-graph of the enlarged set of classes is bipartite.

Example: S-sortable

Examples: not S-sortable

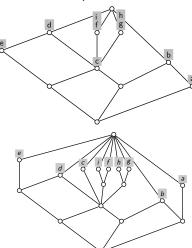
Introduction


A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: S-sortable

Examples: not S-sortable

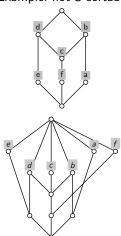


Introduction

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: S-sortable



Introduction

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: not S-sortable

Introduction

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

This condition can be checked algorithmically.

Introduction

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Getting back to Pāṇini's problem

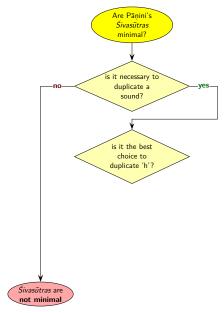
Introduction

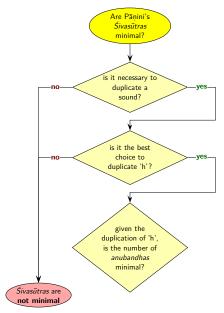
 $a \cdot i \cdot un \mid r \cdot lk \mid e \cdot on \mid ai \cdot auc \mid hayavarat \mid lan \mid namanananan \mid jhabhan \mid ghadhadhas \mid jabagadadas \mid khaphachathathacatatav \mid kapay \mid sasasar \mid hal \mid$

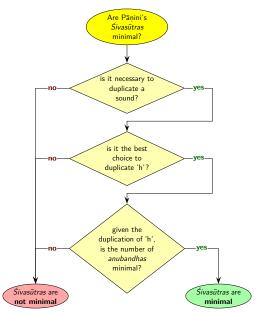
Q: Are the Śivasūtras minimal (with respect to length)?

What does minimal mean?

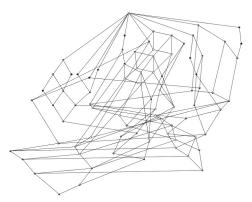

Introduction


```
\begin{array}{l} a \cdot i \cdot un \mid r \cdot lk \mid \ e \cdot on \mid \ ai \cdot auc \mid \ hayavarat \mid \\ lan \mid \ \tilde{n}amanananan \mid \ jhabha\tilde{n} \mid \ ghadhadhas \mid \ jabagadadas \mid \\ khaphachathathacatatav \mid \ kapay \mid \ sasasar \mid \ hal \mid \end{array}
```

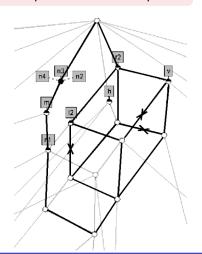

The Śivasūtras are minimal if it is **im**possible rearrange the Sanskrit sounds in a new list with anubandhas such that

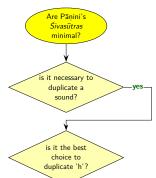

- each pratyāhāra forms an interval ending before an anubandha,
- 2 no sound occurs twice
- or one sound occurs twice but less anubandhas are needed.
- ⇒ duplicating a sound is worse than adding anubandhas

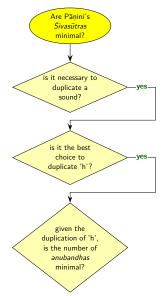
Are Pāṇini's Śivasūtras minimal?

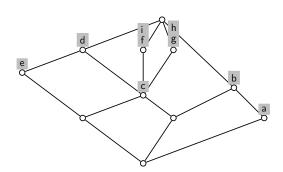


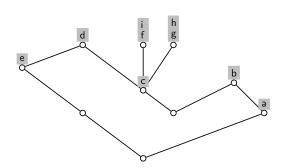
S-sortability


Is it necessary to duplicate a sound?


Main theorem on S-sortability (part 1a)

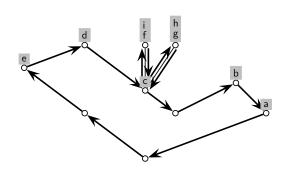

If a set of classes is S-sortable, then its concept lattice is Hasse-planar.


concept lattice of Pānini's pratyāhāras


S-alphabets with a minimal number of markers

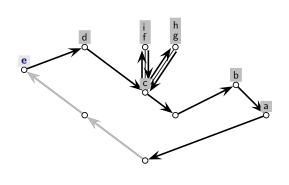
procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.


S-alphabets with a minimal number of markers

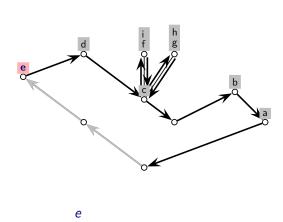
procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.


S-alphabets with a minimal number of markers

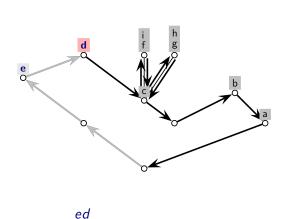
procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before


S-alphabets with a minimal number of markers

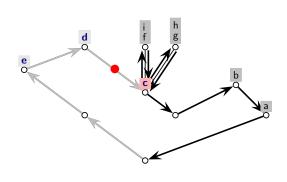
procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before


S-alphabets with a minimal number of markers

procedure

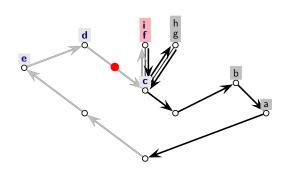
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.


S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

S-alphabets with a minimal number of markers

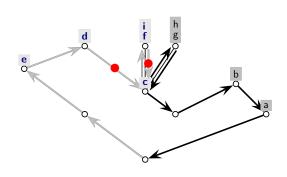

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 edM_1c

S-alphabets with a minimal number of markers

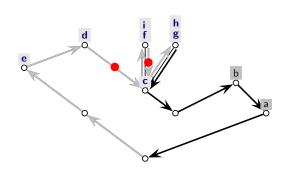


ed M_1 cfi

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

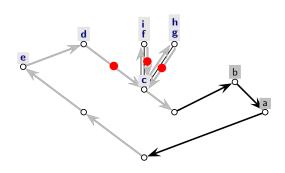

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 $ed M_1 cfi M_2$

S-alphabets with a minimal number of markers

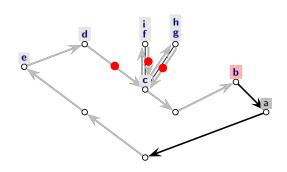

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

 edM_1cfiM_2gh

S-alphabets with a minimal number of markers

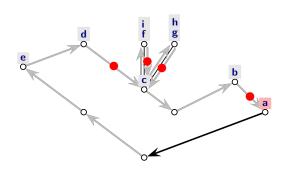


 $ed M_1 cfi M_2 gh M_3$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

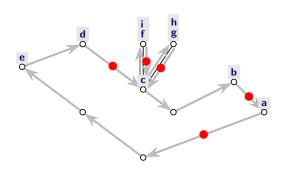


 $edM_1cfiM_2ghM_3b$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

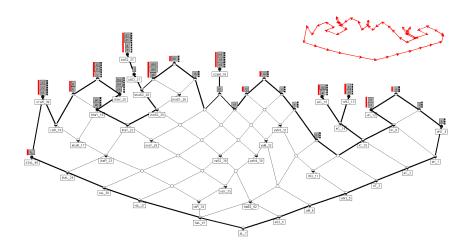


 $edM_1cfiM_2ghM_3bM_4a$

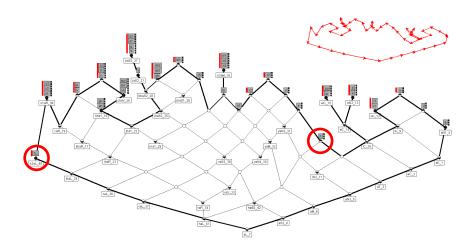
procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

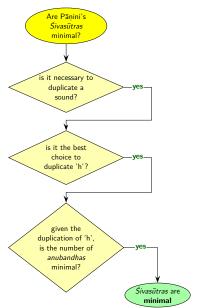


 $edM_1cfiM_2ghM_3bM_4aM_5$


procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

Concept lattice of Pāṇini's pratyāhāras with duplicated h


Concept lattice of Pāṇini's pratyāhāras with duplicated h

Concept lattice of Pāṇini's pratyāhāras with duplicated h

With the *Śivasūtras* Pāṇini has chosen one out of nearly 12 million minimal S-alphabets!

Open problems

Introduction

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

Open problems

Introduction

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

Open problems

Introduction

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

Literature

- Kiparsky, P. (1991), Economy and the construction of the Śivasūtras. In: M. M. Deshpande & S. Bhate (eds.), *Pāṇinian Studies*, Michigan: Ann Arbor.
- Petersen, W. (2008), Zur Minimalität von Pāṇinis Śivasūtras Eine Untersuchung mit Mitteln der Formalen Begriffsanalyse. PhD thesis, university of Düsseldorf.
- Petersen, W. (2009), On the Construction of Sivasutra-Alphabets. In: A. Kulkarni and G. Huet (eds.): *Sanskrit Computational Linguistics*. LNCS 5406, Springer.
- Staal, F. (1962), A Method of Linguistic Description. Language 38, 1-10.

Origin of Pictures

- libraries (left): http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right):
 http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses: http://www.metrogroup.de/servlet/PB/menu/1114920_l1/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/