
Modelling the Grammatical Circle of the

Pān. inian System of Sanskrit Grammar

Anand Mishra

Department of Classical Indology
Ruprecht Karls University, Heidelberg, Germany

amishra@ix.urz.uni-heidelberg.de

Abstract. In the present article we briefly sketch an extended version
of our previously developed model for computer representation of the
Pān. inian system of Sanskrit grammar. We attempt to implement an
antecedent analytical phase using heuristical methods and improve the
subsequent phase of reconstitution using the rules of As.t.ādhyāȳı by in-
corporating strategies for automatic application of grammatical rules.

Keywords: Sanskrit, Grammar, Pān. ini, As.t.ādhyāȳı, Computational Lin-
guistics, Modelling

1 Introduction

In the following we propose a computer model for representing the grammatical
process of the Pān. inian system of Sanskrit grammar. In Sect. 2 we describe the
circular nature of this grammatical process. It consists of first an analysis of a
given linguistic expression into constituent elements and then its reconstitution
using a given set of rules. This process, thus starts with a provisional statement
and ends in a sam. skr. ta or perfected expression.

A brief summary of our model for implementing the latter step of reconstitu-
tion of linguistic expressions using the rules of As.t.ādhyāȳı is presented in Sect. 3.
The implementation of the preceding analytical step is now being attempted. The
main approach here is to improvise heuristics to guess the constituent elements
of a given expression. This is outlined in Sect. 4. The subsequent reconstitutive
step as specified by As.t.ādhyāȳı is now proposed to include strategies for auto-
matic application of rules in Sect. 5. The main program modules implementing
all this are mentioned in Sect. 6.

2 Circular Nature of the Grammatical Process

The As.t.ādhyāȳı of Pān. ini is a device to produce linguistic expressions using
its constituent elements. It prescribes a set of fundamental components which
constitute the language, characterizes them using a number of attributes and
specifies rules to form the final linguistic expressions. This process of constructing



linguistic expressions presupposes a process of analysis, as a result of which,
Pān. ini1 had at his disposal fundamental components like bhū, tip2 etc.

The analytical process, beginning with the pada-pāt.ha of Vedic mantras is not
recorded in terms of rules of analysis. Thus, Madhava Deshapande [3] notes
that Pān. ini’s grammar “does not provide us with analytical tools to go from
texts to their interpretation, or from sentences to morphemes and phonemes. It
presupposes the results of an analytical phase of scholarship, but is itself not
representative of that analytical phase”.

The As.t.ādhyāȳı records processes only of the second phase of a grammatical
circle that begins with a provisional expression which a speaker formulates to
express her/his intention (vivaks. ā) and culminates in formation of a sam. skr. ta
expression. The first phase, that of analysis of a sentence in one or more padas
(vākyavibhajyānvākhyāna) and further a pada in its constituting components
i.e. prakr. ti and pratyaya etc. (padavibhajyānvākhyāna), precedes the process of
synthesis.3

Thus, the grammatical process can be stated as consisting of the following
steps:

1. Collection of padas Pj from a (provisional) sentence Si.

Si = {Pj}
n
1 (1)

Decomposition of a pada Pj into prakr. ti (root) R and pratyayas (affixes)
A1···k.

Pj = {R,A1···k} (2)

2. Combination of the constituent components into padas and sentence.

{R,A1···k} −→ P ′
j (3)

{P ′
j}
n
1 −→ S′

i (4)

The above steps comprise a circular process of first decomposing a (provisional)
sentence into imaginary4 components and then reassembling these components
to form a sam. skr. ta expression.

Si −→ {Pj}
n
1 −→ {R,A1···k} −→ {P ′

j}
n
1 −→ S′

i (5)

Thus, modelling the grammatical process involves modelling this circular process
of decomposition and then recombination, through which a provisional sentence
is transformed into a sam. skr. ta sentence.5

1 Here, a reference to Pān. ini includes his predecessor, contemporary and successor
grammarians as well.

2 The it - markers are represented in small caps.
3 See Bhattacharya [1] Pp. 228.
4 See Bhattacharya [1] Pp. 229.
5 See Houben [7] Pp. 48.



3 Representing the Grammatical Process of As.t.ādhyāȳı

This section briefly summarizes the basic data structure for modelling the gram-
matical process of As.t.ādhyāȳı.

6

3.1 Fundamental Components

The building blocks of the language are collected and assigned a unique key in
our database. For example, the phoneme /a/ has the key a 0, the kr. t suffix /a/
has the key a 3 and the taddhita suffix /a/ is represented by the key a 4.

Definition 1. The collection of unique keys corresponding to the basic con-
stituents of the language, we define as the set F of fundamental components.

Remark 1. This set is further sub-divided in two disjoint sets consisting of the
set of keys corresponding to the phonemes (P) and the set containing the keys
of the rest of the constituting elements (M).

P = {a 0, i 0, u 0, . . .} (6)

M = {bhU a, tip 0, laT 0, . . .} (7)

3.2 Attributes

The fundamental units of the language are given an identity by assigning a num-
ber of attributes to them. This includes the various technical terms introduced
in the grammar as also the it -markers and pratyāhāras.

Definition 2. The collection of unique keys corresponding to the terms, which
characterize a fundamental component, we define as the set A of attributes.

Remark 2. Corresponding to the sets P and M we can decompose the set A into
two disjoint sets Aπ and Aµ, Aπ being the set of unique keys of the attributes
to the elements of P and Aµ to elements of M.

A = Aπ ∪ Aµ (8)

Aπ = {hrasva 0, udAtta 0, it 0, . . .} (9)

Aµ = {dhAtu 0, pratyaya 0, zit 9, . . .} (10)

Remark 3. Any two of the four sets P ,M,Aπ,Aµ are mutually disjoint.

Given the mutually disjoint sets P , M and A, we represent a linguistic expres-
sion at any stage of its derivation through a language component, which is an
ordered collection of sound sets. We first define a sound set and then a language
component in terms of these sound sets.

6 For a detailed description, see Mishra [9].



3.3 Sound Set ψ

Definition 3. A sound set ψ is a collection of elements from sets P ,M and A
having exactly one element from the set P.

ψ = {πp, µi, αj |πp ∈ P , µi ∈ M, αj ∈ A, i, j ≥ 0} (11)

3.4 Language Component λ

Definition 4. A language component λ is an ordered collection of at least one
or more sound sets.

λ = [ψ0, ψ1, ψ2, . . . ψn] such that ‖λ‖ > 0 (12)

A language component λ has as many sound sets ψi’s as there are phonemes in
that component. A sound set ψ contains a number of fundamental components
and attributes. Those attributes which are common to a number of sound sets in
a language component, become the attributes of that chain of sound sets. This
chain could be a single phoneme, or a morpheme or more than one morphemes
and even more than one words.

The process of formation is represented through a process strip σ, which is
an ordered collection of a pair having its first entry as a rule number and second
one to be a language component, which is achieved after application of this rule.

3.5 Process Strip σ

Definition 5. A process strip σ is an ordered collection of pairs, where the first
element of the pair is the number of a particular grammatical rule (e.g. rulep)
and the second element is a language component λ.

σ = [(rulep, λp), (ruleq, λq), . . .] (13)

There are two basic operations, attribute addition and augmentation which are
applied to a language component. All the operations in As.t.ādhyāȳı e.g. substi-
tution, reduplication, accentuation etc. are implemented using a combination of
these two basic operations.

3.6 Attribute Addition

Let α ⊂ A ∪M and ψ be a sound set. Then attribute addition is defined as

haψ(ψ, α) = ψ ∪ α (14)

Remark 4. This operation can be applied to a number of sound sets given by
indices [i, i+ 1, . . . , j] in a given language component λ

haλ(λ, α, [i, . . . , j]) = [ψ1, . . . , ψi ∪ α, . . . , ψj ∪ α, . . . , ψn] (15)



3.7 Augmentation

Let

λ = [ψ1, . . . , ψi, ψi+1, . . . , ψn]

λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk]

and i be an integer index such that i ≤ ‖λ‖, then augmentation of λ by λk at
index i is defined as

hg(λ, λk, i) = [ψ1, . . . , ψi, ψ1k, ψ2k, ψ3k, . . . , ψmk, ψi+1, . . . , ψn] (16)

3.8 Substitution

We define substitution in terms of the above two operations.
Let [i, i + 1, i + 2, . . . , j] be the indices of sound sets to be replaced in the

language component λ = [ψ1, . . . , ψi, ψi+1, . . . , ψn].
Let λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk] be the replacement, then the substitution

is defined as

hs(λ, λk, [i, . . . , j]) = hg(haλ(λ, {δ}, [i, . . . , j]), λk, j) (17)

where δ ∈ A is the attribute which says that this sound set is no more active
and has been replaced by some other sound set.

A rule of grammar is represented through a function fq, which takes a process
strip σp and adds a new pair (ruleq, λq) to it where ruleq is the number of the
present rule, and λq is the new modified language component after application
of one or more of the two basic operations defined above on the input language
component λp.

fq(σp) = σq where (18)

σp = [. . . , (rulep, λp)] (19)

σq = [. . . , (rulep, λp), (ruleq, λq)] (20)

λq = ha, hg(λp, . . .) (21)

A typical formative process begins with a seed element (usually a verbal root
or nominal stem), and a chain of rules provided manually through a template is
applied. At the end, a sam. skr. ta expression is formed.

The system has been tested for different formative processes of As.t.ādhyāȳı
and can be accessed online (http://sanskrit.sai.uni-heidelberg.de).

4 Heuristically Analyzing the Sanskrit Expressions

As.t.ādhyāȳı provides us with a collection F of fundamental elements which is
a finite set, having limited entries. Using this set and another finite collection
of rules, a substantially bigger set of linguistic expressions can be formed. To



specify this process, a number of meta-linguistic entities (collected in set A of
attributes) as well as conventions are used.

This process presupposes another process of looking for these fundamental
components in the expressions of the language. For example, by some process
of analysis, it is ascertained that with bhavati the elements like bhū or śap or
tip are associated.7 As mentioned earlier, there are no recorded rules for this
step. The question, which fundamental elements are associated with a particular
expression, can however be approached heuristically.8 The problem can be stated
as follows:

Problem 1. Given a string S, search for the possible break-up tuples such that
each tuple contains only fundamental elements which could be later used as seeds
for reconstitution.

The above task is performed by an Analyzer (A) which aims at guessing the
possible fundamental components constituting a given sentence S. It does not
aim to ascertain the perfect break up in terms of fundamental constituents, but
only some of the possible components, which could function as seeds for the
subsequent step of reconstitution.

Example 1. We give an example first for a sub-problem, where our string S is
a pada. Given S = jayati, A(S) should fetch us at least a tuple consisting of at
least the verbal root ji and possibly the tiṅ suffix tip as well.

A(jayati) = [(ji, tip, . . .), (e1, . . .), (e2, . . .), . . .] where ei ∈ F (22)

In fact, it gives a list of possible decomposition tuples.

4.1 Some Observations on the Process of Analysis

Before we describe our approach for developing heuristics towards analysing an
expression and give an example, we first mention a few observations as to the
nature of this problem.

On the surface, it seems to be searching for a needle in a hay stack, but a
closer look allows for such an adventure! For this purpose, certain features of the
grammatical corpus and processes of As.t.ādhyāȳı can be made use of.

1. The set of fundamental elements F is finite. That means, we do not have to
search infinite elements.

2. The order of fundamental elements in a tuple is also not random. Thus,
(upasarga, dhātu, vikaran. a, pratyaya) is one such (partial) order.

7 The examples here are at pada level and not at vākya level, although the unit of
analysis (as well as synthesis) is a sentence. This is because of simplicity and also it
does not amount to any loss of generality.

8 I am also working on the possibilities to incorporate some statistical methods, but
it is too early to report about it.



3. Simultaneous presence of certain fundamental elements within a tuple is also
restricted. For example, while analysing a pada, both a tiṅ suffix as well as
a sup suffix can not occur simultaneously.

4. Certain attributes of the fundamental elements, like avasāna, sup, tiṅ indi-
cate pada boundaries. This is helpful to identify more than one padas within
a character string.

5. A dictionary of possible surface forms (as keys) and corresponding original
elements (as values) provides a connection between phoneme chains on the
surface level to the fundamental elements, which may have contributed to it.
Here, a special sub-set is of those elements, like dhātus or tiṅ suffixes which
are more abundantly present.

6. Consonants are less prone to phonetic changes.
7. The replacement rules (ādeśa-sūtras) can be reversed, and these reversed

rules can be used to gain the replaced element. Thus, for example, the re-
placement rule thā ah. se (3.4.080)9 replaces the whole of thās of a t.it lakāra
with se. So in case, se is identified, the reversal of this rule will be used to
check the possibility of thās here.

8. Reverse engineering of certain standard vidhis, e.g. reduplication or s.atva
vidhi etc. brings us closer to the original element.

Finally it should be mentioned that it is for the teleological purpose of providing
seeds for the subsequent step of reconstitution, with which this phase is con-
cerned and not to provide a correct and complete decomposition of a sentence
or a word. In fact an imprecise break up of an incorrect pada can only possibly
lead to the sam. skr. ta form.

4.2 The General Process of Analysis

Given a character string, the general process of analysis involves in guessing its
possible break ups in terms of elements of the set F of fundamental constituents.
It consists of the following steps:

1. Take a possible break up of character string.
2. Try to find the corresponding elements associated with these sub-strings

using the dictionary which maps surface forms to fundamental elements.
3. Try to find the possible replaced elements using reverse replacement rules in

a given tuple of fundamental elements.
4. Check for Pān. inian consistency of this tuple.
5. If consistent, then add to the list of break up tuples.
6. Repeat the previous steps for a new initial break up.

We illustrate the above process through a couple of examples.

Example 2. Consider pavete to be the input string. We first try to guess the
possible tiṅ suffix. For that, we look up in the the dictionary which maps surface
forms to fundamental elements for tiṅ suffixes. This dictionary looks like

{ti : [tip, . . .], tah. : [tas, . . .], . . . , te : [ātām, . . .], . . .}

9 Numbers in brackets refer to the rule number in As.t.ādhyāȳı.



We take only those break up strings which can possibly be associated to some
tiṅ element. Thus, the possible break up is restricted through the keys of the
dictionary of surface forms to fundamental elements. In this case, we break the
string as pave te and associate ātām to te. We represent this as follows

[(pave)(te : ātām)]

Next we look at the leading part (pave) of the provisional break up, which has
the possibility that it may contain the verb. Here we look first in the list of verbs
beginning with p. These are [paci, pat.a, . . . , pus.a, pūṅ, pūñ, . . . ]. We now use
the rules for reverse replacement. This is guided by the standard replacement
series in verbs. One such series is ū → o → av replacements. The character string
av motivates the reverse replacement, and applying this, we come from (pave)
to (pūe). We associate now the verbs pūṅ as well as pūñ to the sub-string pū.
We thus have,

[(pū : pūṅ, pūñ)(e)(te : ātām)]

We now collect the decomposition tuples. These are,

[(pūṅ, ātām), (pūñ, ātām), . . .]

Now the Pān. inian consistency of the tuples are checked. In this case the tuples
are (dhātu, pratyaya) tuples. So the order of elements within a tuple is correct.
Moreover, within a tuple, there is no simultaneous presence of mutually exclusive
pairs of fundamental elements. For example, no sup and tiṅ suffixes are present
simultaneously. Thus, these two tuples are added to the list of other possible
break up tuples of fundamental elements.

L = [. . . , (pūṅ, ātām), (pūñ, ātām), . . .]

The process is repeated for other possible character break ups (as long as there is
such a possibility). The tuples are ranked according to the richness of information
they contain for the subsequent process of reconstitution. Thus, those tuples,
having a dhātu or prātipadika and a tiṅ or sup suffix are ranked higher than
those having only a dhātu etc.

Example 3. Consider the case where the input string (for a pada) has four or
more consonants. We look for the possibility whether it is the case of reduplica-
tion, specially because of the suffix san.

1. Look whether there is consonant s or s. in the input string
2. Use the heuristics for deciding the tiṅ endings for a pada (see previous

example) and check if s or s. appear before these.
3. Get the part before s or s. and check it with heuristics for reduplication.

Now the heuristics of reduplication is implemented taking care of the process
of reduplication in As.t.ādhyāȳı. Thus, let us consider the case, where input has
three consonants.



1. The probability of a root with two consonants is high.
2. Get the list of roots having the consonants as the last two consonants of

input. (Here, also the roots which undergo changes due to n. atva or s.atva
vidhi etc.)

3. Check if the first consonant of input could be a reduplicated consonant e.g.
pairs like j -g or c-k etc.

4. If the last consonant is r or l then consider the possibility of r. or l..

Consider now the input string: titiks.ate. The process of analysis is briefly sketched
below.

1. Consider a possible string break up: titik s.a te
2. Check heuristics for tiṅ and assume that it returns (ta, ātām. . . )
3. Split at s or s. : titik s.ate
4. Send the first half before s or s. to check for reduplication.
5. We have here three consonants: t t k
6. Search for the roots with consonants t k (as also the possible variants t j, t

g etc.). It returns roots like tika, tiga, tija, tuja, tuj i etc.
7. Check the first consonant of the input, if it is according to the reduplication

rules.
8. Now reduce the choice further using other heuristics (e.g. looking at the

vowels between the two consonants of the root).
9. Thus, the output of this heuristics is: [(tika, san, ta), (tiga, san, ta), (tija,

san, ta), . . . ]

5 Forming Sam. skr. ta Expressions Using

the Rules of As.t.ādhyāȳı

Given a break up tuple, the process of forming the sam. skr. ta expression(s) is
regulated by the rules of As.t.ādhyāȳı. We developed a model for constituting
linguistic expressions beginning with seed elements and through manual pre-
scription of rule order using templates (see Sect. 3). We now propose to include
strategies for automatic application of rules.

5.1 An Extended Model for Forming Sam. skr. ta Expressions

This part of the grammatical process is being implemented in the Synthesizer

module, which takes as input a tuple of fundamental elements. This tuple is
gained by the preceding step of analysis. All the constituent elements for for-
mation of a particular expression are not provided in this input tuple, but only
the seed elements, e.g. verbal root or nominal stem and if possible tiṅ or sup

suffixes etc. This initial tuple contains partial information about the vivaks. ā or
intention of the speaker.

Further, the input tuple is consistent. Consistency means that it contains
only those elements which can occur simultaneously. Moreover, the ordering of



these elements is according to the Pān. inian principles. For example, the element
corresponding to dhātu must precede the pratyaya or suffix element.

In the Synthesizer, the elements of this input tuple are taken as seeds
and a number of appropriate rules are applied with the goal of reproducing the
sam. skr. ta form of the original expression. For this purpose, the data structure
and corresponding operations are described in Sect. 3. The entire process is
simulated using the process strip. All the information which is required to assess
the conditions for application of a particular rule is stored in this process strip,
which stores not only the current stage of formation but also the previous stages.

The question, which rule must be applied next, was resolved thus far by
prescribing a template based approach in which the order of rules to be applied
was stated manually. We now propose strategies for automatic application of
rules. For this, we introduce stable and transitional λ - states.

5.2 Stable and Transitional λ - States

At any stage of formation, the fundamental components together with their
attributes are represented in a language component λ. Given such a language
component, we first try to bring it in a stable λ - state by applying certain rules
which we call stabilizing rules.

The purpose of this step is to prepare the current λ - state for assessing the
‘cause of application’ or nimitta of those transitional rules which bring about a
transition of λ - state. We first specify what we mean by stabilizing and transi-
tional rules.

Stabilizing Rules There are certain rules in As.t.ādhyāȳı (specially most of the
definition rules), which need to be applied to a λ - state in order to add more
grammatical information which is necessary for a progressive flow of the process
of formation of linguistic expressions.

For example, if a new element is introduced in the previous step, which
contains the phoneme /ā/, then the application of rule vr.ddhirādaic (1.1.001)
adds the information that it also has the attribute vr.ddhi, which may be required
for subsequent application of other rules. Similar rules which bring about some
kind of attribute addition are what we call stabilizing rules.10

We collect these stabilizing rules seperately and define this set as follows:

Definition 6. The set of stabilizing rules R∫ is the set of those characterizing
rules in As.t.ādhyāȳı, which fulfill the condition that the application of any rule
belonging to this set on a language component is not depended upon the results
of application of any other rule of this set.

For example, the characterizing rules vr.ddhirādaic (1.1.001) and adeṅgun. ah.
(1.1.002) belong to the set of stabilizing rules R∫ .

10 In fact many fundamental elements have certain attributes which are static, i.e. they
are always associated with that particular fundamental element. For example, with
the element /a/ the attribute ac (specifying that it is a vowel) is always attached.



Having defined the set of stabilizing rules, we can now speak of a stabiliz-
ing process (−→) which brings a language component λ to a stable language
component λ′ by applying the stabilizing rules from the rule set R∫ .

λi −→ λ′i (23)

Transitional Rules Those rules which do not belong to the set of stabilizing
rules, we call transitional rules. The effect of the application of a particular rule
belonging to this set has a consequence for the application of some other rule
belonging to this same set. Barring those characterizing rules grouped under R∫ ,
all the other rules, we put in this group.

The process of transition of λ - states caused by application of transitional
rules can now be considered as a transitional process (=⇒).

λi =⇒ λi+1 (24)

The General Formative Process The general Pān. inian process of formation
of linguistic expressions can now be presented as an incremental increase of
process strip σ through a transitional phase and then stabilization of the strip
through a stabilizing phase, whereby the two phases always alternate.

[. . . , ([rulepi
], λp −→ λ′p)] =⇒ [. . . , ([rulepi

], λ′p), ([ruleqi
], λq −→ λ′q)] (25)

5.3 Executing the Stabilizing Process

The stabilizing phase (λp −→ λ′p) is executed every time by applying the rules
from the set R∫ . This helps in characterizing the current situation of the language
component.

Example 4. For example, if a morpheme like śap is added in the previous tran-
sitional phase, the following stabilizing phase adds the attributes like hrasva,
gun. a, śit, pit, sārvadhātuka etc. to the sound set corresponding to the phoneme
/a/ of śap.

5.4 Executing the Transitional Process

Given a stable λ - state within a process strip, the main challenge here is to decide
as to which rule should next be applied to proceed through the transitional
step. A correct and definite answer to this problem is the key for automatic
application of rules in the process of formation of linguistic expressions according
to As.t.ādhyāȳı. The problem can be divided into two sub-steps.

1. What are the possible rules which could be applied?
2. Given more than one possibilities, how to choose the correct one?



Assessing a λ - State A sub-module Assessor assesses a given λ - state and
gives a tuple of list of rules, which could be applied for a transitional process. This
tuple is then sent to ConflictResoluter, another sub-module, which evalutes
the question of conflicting rules and fetches those options which may lead to
correct results. If there are more than one possibilities, then all are pursued in
a parallel manner.

The Assessor Module There are two guiding principles here to decide which
rules can possibly now be applied:

1. Assessment of the intention (vivaks. ā) of the speaker.
2. Assessment of the thus far evolution of formative process, i.e. assessment of

the input process strip.

Assesing the Intention of the Speaker One way to assess the intention of
the speaker is to provide a user interface at this level. But for now, we depend
on our heuristic analysis of the original provisional input by the speaker.

Example 5. If bhavati is what the speaker inputs and if our analysis provides us
with one such tuple like (bhū, tip) then we can guess some of the information as
to what she/he wants to convey. Thus, at some stage when the question arises
which tiṅ suffix is to be attached, then the entry in the input tuple can give us
the information.

Example 6. Given the initial tuple (tija, san, ta), and the situation that we
have just the dhātu in the stable λ− state (λ′), the question as to which way to
proceed could be answered by looking at the presence of san.

Assesing the Stable λ − state The assessment of the stable λ - states in a
process strip is based upon the observations as to what are the elements which
are currently present and what could be the next introduction (āgama) or sub-
stitution (ādeśa). Here, certain guidelines for the general flow of the formative
process are first taken into consideration.

For example, in the situation where only a dhātu is present and the input
tuple has a tiṅ suffix, the general flow would be to apply rules for introduction
of lakāra. If there is already a lakāra and no tiṅ substitute, then rules for such
a substitution are applied.

The observations regarding the general order of introduction of fundamental
elements are stored in terms of defining a partial order of these elements. This
partial ordering aims to provide the answer to the question as to which element
should next be introduced.

Certain morphemes give rise to a scope of applying certain rules once they
are introduced. This observation is collected in the form of a special dictionary,
where the possible rules, which could subsequently be applied, are listed. For
example l it. , san etc. trigger reduplication, and so the rules which bring about
reduplication are listed with these morphemes.



Conflict Resolution The successive filtering of possible candidates should
normally provide a definite answer to the question of rule application. But in
some cases, there are conflicting claims. Here we follow the solutions according
to the principles laid down by Joshi-Roodbergen [5]. One such principle for
a ‘one-way conflict’ is that in case of rules not belonging to asiddhakān. d. a, “that
rule is to be applied first, which destroys the nimitta of the other rule, or which
changes the phonetic form to which the other rule was to become applicable”.11

The ConflictResoluter Module The conflict resolution algorithms are im-
plemented in the module ConflictResoluter which gets as input, the process
strip together with a tuple of list of conflicting rules. It checks the applicability
of these rules and returns the one which should be applied. We briefly show its
functioning by way of one example.

Example 7. Consider the reconstitutive process of dudyūs.ati and let the process
strip correspond to the stage12

σp = diū + san + śap + tip

At this stage, the Assessor proposes two possibilities ([6.1.009], [6.1.077]). The
first one is the rule san yaṅ oh. (6.1.009) which calls for reduplication and the
second one is the rule ikah. yan. aci (6.1.077) which prescribes substitution of
yan. respectively in place of ik. The ConflictResoluter now checks as follows:

1. Take the process strip σp and apply san yaṅ oh. (6.1.009). This means
applying the process of reduplication. This gives the extended process strip
with the new λ - state as

σq = di + diū + san + śap + tip

2. Now this new λ - state is stabilized and then checked using Assessor if the
conflicting rule (6.1.077) is still applicable. This is the case here. So, the
application of this rule neither changes the nimitta of the conflicting rule
nor does it bring about any change in the phonetic form of the elements to
which the other rule is to be applied.

3. The other rule ikah. yan. aci (6.1.077) is now applied to the process strip
σp. This gives the result

σq = dyū + san + śap + tip

4. The resulting new λ - state is assessed and it shows that the phonetic form
of the element to which the other rule is to be applied has been changed.

11
Joshi-Roodbergen [6] Pp. X.

12 The process strip actually is a complex data structure which is expressed in terms
of language components, which in turn is a list of sound sets (see Sect. 3), but for
the sake of simplicity, we write it here in this form.



5. This results in selection of the rule ikah. yan. aci (6.1.077) for application
at this stage, because both the rules do not belong to the range of rules of
asiddhakān. d. a.

Similarly, other principles of conflict resolution are implemented. We enunciate
below the general architecture of the computer implementation of the modelling
process. At the moment, the modules are in the programming phase and testing
of a wider range of examples are needed before the system could be put to use.

6 Computer Implementation of the Model

The entire process is divided into four main modules besides a specially designed
Database of the fundamental components F and attributes A of Pān. inian Gram-
mar. These four main modules are:

1. Input
2. Analyzer
3. Synthesizer
4. Output

Each of them contain a number of other sub-modules. We sketch briefly the main
ones below.

6.1 Database

Besides having a repository of the fundamental components F and attributes
A in As.t.ādhyāȳı, there are a few special dictionaries and lists of elements and
attributes serving specific purposes. It includes

1. A dictionary which maps surface forms to fundamental elements, which is
used by the Analyzer module. It looks like:

{ti : [tip, . . .], tah. : [tas, . . .], . . . , te : [ātām, . . .], . . .}

2. A set of pairs whose elements exclude each other within an analysis tuple.
E.g. {(sup, tiṅ), (lat. , laṅ), . . . }

3. A list of acceptable partial orders within an analysis tuple. E.g. [(upasarga,
dhātu, vikaran. a, pratyaya), (dhātu, san, vikaran. a), . . . ]

4. A dictionary, used by Assessor, of fundamental elements as keys and list of
rules which are possibly applied when this element is introduced as values.

5. A number of special subsets of the set of fundamental elements or attributes
for the sake of identification of respective elements. For example, the set of
phoneme attributes, or the set of morpheme attributes etc.

6.2 Input

This module, as the name suggests, takes care of the user interface for enter-
ing a provisional sentence S. After an initial processing, e.g. checking the non-
occurence of phonemes not belonging to the language, the input is passed to the
Analyzer.



6.3 Analyzer (See Sec. 4)

Given a sentence S, the Analyzer aims at guessing the possible fundamental
components constituting it. The Analyzer functions heuristically and suggests
first a number of possible break ups. These possibilities are then ranked based
upon certain constraints and provide seeds for Synthesizer.

Thus, given a string S, the Analyzer (A) produces a ranked listD of possible
decompositions, represented as tuples containing the fundamental components
constituting S.

A(S) = D = [(e1, e2, . . .), (e3, . . .), (e4, . . .), . . .] where ei ∈ F (26)

6.4 Synthesizer (See Sec. 5)

Given an analysis tuple t = (e1, e2, e3, . . .), the Synthesizer (Z) now applies a
series of rules from As.t.ādhyāȳı, which are collected in a rule set R, and produces
the final expression S′.

Z((e1, e2, e3, . . .)) = S′ where ei ∈ F (27)

For the purpose of assessing a given stage during the process of formation, it
uses the Assessor module, which outputs a tuple of lists of rules which could
be applied at that stage. In case of a conflict of rules, the ConflictResoluter

module tries to resolve the clash. Otherwise all the possibilities are checked in a
parallel manner.

6.5 Output

This module outputs the reconstituted sentence S′ as well as the original provi-
sional sentence S. It also provides a step-by-step process of constitution of the
final expression beginning with its elemental parts and grammatical information
gathered during the course of formation.

References

1. Bhattacharya, R.S. Pān. in̄ıya Vyākaran. a kā Anuś̄ılana. Indological Book House.
Varanasi. 1966.

2. Böhtlingk, Otto von. Pān. ini’s Grammatik. Olms, Hildesheim. Primary source text
for our database. 1887.

3. Deshpande, Madhav M. Semantics of Kārakas in Pān. ini: An Exploration of Philo-
sophical and Linguistical Issues. Sanskrit and Related Studies: Contemporary Re-

searches and Reflections. (eds. Matilal B.K., and Purusottama Bilimoria): 33-57.
Delhi: Sri Satguru Publications. 1990.

4. Dı̄ks.ita, Pus.pā. As.t.ādhyāȳı sahajabodha. Vols. 1-4. Pratibha Prakashan, Delhi,
India. 2006-07.

5. Joshi, S. D. and Roodbergen, J. A. F. On siddha, asiddha and sthānivat Annals of

the Bhandarkar Oriental Research Institute. Vol. LXVIII, Poona, 1987, p.541-549.



6. Joshi, S. D. and Roodbergen, J. A. F. The As.t.ādhyāȳı of Pān. ini. With Translation
and Explanatory Notes. Vol. II. Sahitya Akademi, New Delhi, 1993.

7. Houben, Jan. E. M. ‘Meaning statements’ in Pān. ini’s grammar: on the purpose
and context of the As.t.ādhyāȳı Studien zur Indologie und Iranistik 22:23-54. 1999
[2001].

8. Katre, Sumitra M. As.t.ādhyāȳı of Pān. ini. Motilal Banarsidass, Delhi, India. 1989.
9. Mishra, Anand. Simulating the Pān. inian System of Sanskrit Grammar Proceedings

of the First International Sanskrit Computational Linguistics Symposium, Pp. 89-

95. Rocquencourt, 2007.
10. Śāstr̄ı, Cārudeva. Vyākaran. acandrodaya. Vols. 1-5. Motilal Banarsidass, Delhi,

India. 1971.
11. Vasu, Srisa Chandra and Vasu, Vaman Dasa. The Siddhānta-Kaumud̄ı of Bhat.t.oj̄ı

Dı̄ks.ita. Vols. 1-3. Panini Office, Bhuvanesvara Asrama, Allahabad, India. Primary
source text for prakriyā. 1905.


