Extracting dependency trees from Sanskrit texts

Oliver Hellwig

Institut fiir Sprachen und Kulturen Siidasiens, Freie Universitat Berlin, Germany

Abstract. In this paper, I describe a hybrid dependency tree parser
for Sanskrit sentences improving on a purely lexical parsing approach
through simple syntactic rules and grammatical information. The per-
formance of the parser is demonstrated on a group of sentences from epic
literature.

Keywords: Sanskrit syntax, Sanskrit word order, dependency tree

1 Introduction

Designing a reliable algorithm for the automatic syntactic analysis of
Sanskrit phrases is an important, though still unsolved problem in com-
putational linguistics. Some previous approaches to this problem are
based on built-in rules that encode the syntax of regular Sanskrit phrases
using, for instance, finite automata. How to find these syntactic rules is
not often the central focus of interest, however. Many researchers use
karaka analysis (e.g., [6], claiming free word order for Sanskrit) or the
syntax rules formulated in modern learner’s manuals such as Apte’s or
Kale’s grammars. Whether these rules describe the correct word order
of classical Sanskrit texts remains open to discussion, however, because
they may reflect either a pre- (Panini’s karaka theory) or post-classical
use of Sanskrit. Modern Indological research is no great help in finding
the syntactic rules of the classical language. German Indologists such as
Delbriick [4], Speyer [9], Canedo [2] and, more recently, Ickler [8] took
great pains in analyzing large corpora in detail, but they concentrated
on Vedic and pre-classical prose. Results of these stylistic studies of early
Sanskrit are hardly applicable to classical texts, which are, in addition,
written in verse in most cases (cmp. the critical remarks in [5] on the bias
in selecting the texts). The same holds for Staal’s frequently cited work
[10], which does not care very much about the word order in real Sanskrit
texts. In summary, the syntactic rules used in rule-based approaches are
derived from theories about modern or pre-classical Sanskrit and then
applied to the classical language. This procedure implies that Sanskrit
syntax has remained unchanged over an interval of over 3000 years, a
claim well suiting the tendency to deny any development in this lan-
guage, but not founded on large-scale research.

At this point, we find ourselves in a chicken-and-egg dilemma. Before
using a rule-based approach to analyze the syntax of classical texts, we
need the syntactic rules for the classical language. To find these rules in
significant numbers, we need a syntactic parser that is, as just described,
rule-based in many cases. We may, therefore, simplify the starting prob-
lem: The aim is to design not a complete syntactic parser, but instead an

algorithm giving the most probable dependency tree of a lexically and
morphologically analyzed sentence. Valid rules describing the word or-
der of classical Sanskrit may be derived from a large number of manually
corrected trees in a later step; however, this step is not discussed in this
paper.

Among the numerous approaches to derive dependency trees from sen-
tences in natural languages, a recently published thesis by Yuret is es-
pecially interesting because it combines an appealing basic idea with an
unsupervised learning algorithm [12]. In this paper, I describe how the
performance of Yuret’s purely lexical parser can be improved through
the addition of some simple, yet efficient, features such as information
about grammar (2.2) and valences (2.2), smoothing probabilities (2.2)
and a few fixed syntactic rules (2.2). Because test data for Sanskrit syn-
tax are not available, the performance of the parser is demonstrated
during the improvement steps by analyzing a few sample sentences from
the RAMAYANA (2.3).

2 Building a lexicalized parser

2.1 Yuret’s model

The starting point of the following experiments is the purely lexical de-
pendency parser described by Yuret [12]. According to Yuret, syntactic
information is captured by the mutual information between the lexical
components of a sentence (cmp. [12, 26-31] and Footnote 1, below). Be-
cause mutual information does not depend on the order of two lexical
items, the dependency structure constructed using Yuret’s algorithm is
undirected (but may, of course, be transformed into a directed graph as
soon as the root item is identified). Furthermore, the dependency struc-
ture is acyclic and, therefore, a tree, which is equivalent to the claim that
each word in a sentence should have only one governing word. Finally,
Yuret claims that the dependency structure should be projective, i.e.,
its links should not cross. The author admits that this restriction holds
only for many (not alll) sentences in natural languages; this warning is
especially important for Sanskrit verses. However, projectivity simplifies
the construction of the tree to such a degree that the occasional errors
caused by this condition may be neglected. In summary, the application
of Yuret’s ideas to a sentence produces a dependency tree that reflects
the syntactic structure of the sentence as given by its lexical components.
The arrangement of such a tree is not necessarily identical to the struc-
ture found using, for instance, constituent analysis. However, items close
to each other in the dependency tree should constitute syntactic units in
regular constituent analysis.

Yuret’s system consists of two parts. The processor builds dependency
structures for a series of lexical units (= a sentence), while the learner
represents the “knowlegde” or “brain” storing information gained from
previously analyzed sentences. To parse a sentence, the processor searches
for the most probable structure given the information stored in the

learner. Although there is a Viterbi style algorithm calculating the ex-
act solution, Yuret proposes the following approximation that reduces
computation time from O(n®) to O(n?) [12, 35ff.]:
1. Each sentence is read from left to right. For each word w; to the left of
the current word wj, the conditional probability p(w;|w;) = %
is calculated.!

2. If p(w;|w;) # 0, the words w; and w; may be connected with a link.
However, this link can only be created if (1) it does not intersect
with an already existing link and (2) it does not create a cycle in the
dependency structure. If condition (1) or (2) applies, the new link is
only inserted if its value p(w;|w;) is higher than the respective value
of the existing link. In this case, the existing link is removed from
the dependency tree.

3. When the sentence has been analyzed, the learner is updated with
the linking information created in the second step. Therefore, only
the cooccurrence frequencies of words being connected by a link are
increased in the learner. During the first cycles of the algorithm, the
“brain” of the learner is empty and no dependency structure can be
created. In these cases, the learner is updated using pairs of adjacent
words.

2.2 Improving Yuret’s parser

After being trained on the current corpus of the SanskritTagger database
(cmp. [7]), Yuret’s parser is able to identify some syntactic substructures
in unknown sentences. Nevertheless, when we analyze the sample phrases
(cmp. 2.3), it becomes obvious that the parser never manages to iden-
tify the correct overall structure of any of the samples. This is probably

! Yuret uses the mutual information of ordered pairs of words MI(w;,w;) =
p(wi,wj)
p(wi,*)-p(*,wj)
structure of a sentence S, W the set of all words w; contained in S, and wo the head
word of the structure, Yuret explains the use of mutual information as follows [12,

28/29]. The joint probability of the entire sentence is given by

log instead of the conditional probability. If L denotes the dependency

p(8) = p(Lpwo) [] plwslw) = pLpwe) [pwi, w;)

w;
(wi,wj)EL (wi,wj)EL p()

Because a projective tree constructed from a sentence S has |S|—1 connections after
the head word has been identified, this expression can be rewritten as

(wi, w;)

p(s) =p(L)] plw:) T E s

u};[W (wi;l;][)eL p(wlv*) 'p(*ij)

demonstrating, according to Yuret, that the syntactic information of a sentence can
be expressed by the mutual information contained in the lexemes that constitute the
sentence. Following Yuret, I set p(.S) to a constant factor. — For reasons of numerical
accuracy, I use the logarithm of p(w;|w;) instead of the raw value (multiplication —
addition).

caused by the comparatively small number of data used for training the
parser. While Yuret reports convincing results only for databases of more
than 10 million words, the SanskritTagger database comprises about 2.5
million lexical units. This number is probably not large enough to arrive
at reliable estimations of lexical cooccurrence. The following sections de-
scribe how to improve the performance of the parser without training it
on more lexical data.

Grammatical information Every word stored in the SanskritTag-
ger database is accompanied by grammatical information concerning, for
instance, number, case or tense. Although Yuret deliberately excluded
this kind of information from the parsing process, I have observed clearly
superior analysis of the sample phrases when grammatical information
was taken into account. To include grammar, the conditional probability
of pairs of lexical items is multiplied by the conditional probability of
the respective grammatical categories. These categories are a simplified
version of those described in [7, 44] since only person and number are
recorded for verbal forms.

Verbal valences The second improvement on Yuret’s model concerns
finite verbal forms and their preferred valences. In many cases, verbs
show a strong preference for certain cases, which may be used to en-
force links between verbs and their valences. For this sake, we have built
from the training data a verb-valence dictionary that stores verbs and
the cases that typically occur close to them. Before starting the main
learning process, the part of the corpus used for training is scanned for
verbal forms. If a finite verb is encountered we search for the next and
previous two declined nouns that are included in the same sentence as the
verb, and store the verb-case combination in a preliminary table. Next,
we calculate the global relative frequencies of all cases and then find ex-
traordinary strong verb-case combinations. A combination is considered
strong if (1) it occurs with a frequency of more than 15% and the verb
is referenced at least 100 times, or (2) the relative frequency of case c for
verb ¢ is significantly larger than the global relative frequency for this
case. If a. is the global average frequency of case ¢, fc; is the frequency
of case c¢ given verb i, and n, is the sum of all f.; for verb i, we use a
simple x? test, with significance assigned at the 10% level (x? > 1.64, 1
df), to assess whether f; is significantly above the expected number of
occurrences of case c:

2 Uemaem® (0= fe) = (1= ac) -’

Qe Ni (1—ac)-n;

If one of these two conditions is fulfilled, the verb and case are stored in
a separate valence dictionary.

Whenever the combination of a verb and a declined noun is found during
the processing of a new sentence, we search for the verb in the valence
dictionary just described. If the case of the declined noun is among the
favorite cases of the verb, the linking strength between the verb and

noun is enforced by a positive value (see page 6 for details). — Given the
importance of valence information for parsing (see, for instance, [11]), the
valence dictionary could be corrected manually in a future version of the
program and even enriched by lexical information concerning preferred
valences.

Smoothing cooccurrence frequencies One of the main problems
in processing natural language using statistical methods is the sparseness
of data, especially of n-grams of higher order. Among the many proposed
solutions to this problem, we find simple strategies such as linear inter-
polation (see, e.g., [1]) or add-alpha smoothing. A more sophisticated
strategy that makes use of lexical information gained from the training
corpus was proposed by Dagan et al. [3], and it was successfully ap-
plied to the parsing of Sanskrit sentences. This strategy consists of two
steps: a preprocessing step, during which similar words are retrieved from
training data, and the actual smoothing step. During preprocessing, we
calculate the Kullback-Leibler divergence D between all pairs of words
w; and w; that are contained in the corpus C":

p(wg|w:)
o wkze:cp(wk 18)
Based on D;j, the n nearest words w; are stored for each w;. If an un-
known bigram (w1, w2) is found during parsing, the conditional proba-
bility p(w2|w1) is estimated using conditional probabilities of word pairs
(w1, ws2), where w] is a word similar to w; found in the preprocessing
step. If S, is the set consisting of the n words w, nearest to wi, the
estimation p*(wz|w:) is calculated in the following way:

* _ wa|wa Dlu
P (welw) = > plws] >

Wy €Sy Woy, €Sy

Dlu

Using simple syntactic rules The final and, in my opinion, most
effective way to improve Yuret’s model is the use of simple syntactic
rules, which transform the lexicalized base model into a hybrid parsing
approach. I distinguish between two types of syntactic rules: Fized rules
encode the syntactic structures of a phrase that are certain to occur
(given that the phrase is complete). These rules create fixed links or
prevent lexical links from being constructed. In addition to describing the
basic syntactic structures of a sentence, these rules strongly reduce the
number of possible links and thereby suppress improbable analyses. On
the other hand, enforcements increase or decrease the linking strength,
but they do not insert or remove links from the dependency tree.

Fixed rules can further be divided into positive and negative rules. Pos-
itive rules describe the basic structure of a sentence containing exactly
one verb, which may be supplemented by a congruent subject and abso-
lutives. To detect this basic structure, the sentence is repeatedly scanned
from left to right. In the first scan, the finite verb is detected and linked to
the beginning of the phrase (— head-verb). Next, absolutives are found

and connected either to the head-verb or to other absolutives. The head
verb serves as a “center of gravity” indicating the search direction from
each absolutive contained in the sentence:

TN N A

Abs; - finite verb -+ Absy Abss

“center of gravity”

Finally, nominatives congruent with the head verb are connected to it.
If several nouns can be connected with the verb, the most probable one
given the lexical attraction between noun and verb is selected. Negative
or restrictive rules prevent possible links from being inserted into the
dependency tree. Currently, three negative rules are used:

1. Words contained in a composite must only be linked to the head of
the composite or other words contained in the composite. — This rule
describes the correct formation of composites, but it is sometimes
neglected in real texts. To give just one example: Someone “whose
body is pierced by arrows” should be a saraviddhasarirah. However,
expressions such as Sarair viddhasarirah can be frequently found, for
instance, in epic texts.

2. An indeclinable must not be linked with a noun or adjective. — Ex-
ceptions are indeclinables forming part of composites such as su- or
nana-.

3. Incongruent nouns, except for the combination any case-genitive,
must not be linked. — The validity of this rule is not established for
the nominal style of scientific Sanskrit; see, e.g., prasiddhasadharmyat
sadhyasadhanam upamanam (NYASU, 1, 1, 6), where -sadharmyat is
dependent on -sadhanam.

Enforcements change the strength of a new link, but they do not influence
its insertion directly. We have met the first type of enforcement in section
2.2: If a case is among the preferred valences of a finite verb or absolutive,
the link between the noun and the verb is enforced. In addition, the
following three syntactic enforcements are used:

1. The linking strength between grammatically congruent nouns is in-
creased (e.g., tena & balena, aksayasya & atmanah).

2. Links between nominatives not identified as subject (see above) and
congruent finite verbs are enforced.

3. In the early phases of learning, indeclinables have a strong influence
on the lexical information due to their high frequencies. Therefore,
the strength of a link connecting an indeclinable with any other word
(except for finite verbal forms) is weakened. This enforcement is only
applied when negative rule 2 is not valid.

The parameter values for the four enforcements (including the combi-
nation of verb and valence from section 2.2) were estimated using a ge-
netic algorithm. Running this algorithm repeatedly for 100 generations
resulted in the following average parameter values: verb - valence: 3.2,
congruent nouns or adjectives, nominative - verb: 3, indeclinables: 0.7.

2.3 Evaluation

In this paper, we cannot present a true evaluation because test data for
Sanskrit syntax are not available. Therefore, we demonstrate the per-
formance of the parser using two sentences from chapter RAMAYANA,
BALAKANDA 9, which was excluded from the training set, and the popu-
lar benchmark sentence pramanabhuta acaryo darbhapavitrapanih pran-
mukhah Sucau avakase upavisya mahata yatnena satram pranayati sma.
The two sentences from RAMAYANA are:

RAM, Ba, 9, 6: $rutva tatheti raja ca pratyuvaca purohitam.

and

RAM, Ba, 9, 32: evam sa nyavasat tatra sarvakamaih supujitah.

Figure 1 shows the results of parsing the two sample phrases from the
RAMAYANA using Yuret’s basic model. As mentioned on page 3, the
parser is not able to identify even the basic structures of the sentences,
possibly due to the small number of training data. In addition, the
strong influence of indeclinables on the dependency structure is clearly
discernible. In Figure 2, the same two sentences are parsed with gram-
matical information (2.2), valences (2.2), smoothing (2.2) and syntactic
enforcements (2.2) activated. Although the parser is still far from able
to identify the correct structure of the sentences, it found some impor-
tant substructures such as pratyuvaca < purohitam, tatha < iti (iti
terminating a direct speech) and the complex made of two composites in
the second sentence. As becomes apparent from intermediary stages of
learning not reproduced in this paper, the detection of the last substruc-
ture was especially influenced by the valence dictionary. In the last test,
whose results are displayed in Figure 3, all optimizations are activated.
Now, each of the sentences contains only one error. The word ca should
probably not be connected to the head verb in the first sentence. In the
second sentence, tatra remains unconnected to the rest of the sentence
(but could, of course, easily be associated with nyavasat after finishing
the parsing process).

Parsing the “benchmark sentence” pramanabhutah ... results in equally
good analysis (cmp. Figure 4). After fixing pranayati as the head verb,
the algorithm connects the absolutive upavisya to the verb and selects
the composite ending in -panih as the subject of the sentence. Here, a
human user would certainly select acaryah, and, in some runs of the
learning process, this word is indeed marked as the subject of the sen-
tence. These differences can be explained by the heuristic nature of the
learning process and can perhaps be amended by running the process
repeatedly with different initalizations and then averaging the results.
Among the remaining substructures, attention should be paid to the ad-
verbial expressions modifying the absolutive and the head verb. Both
adverbial structures are connected to the right verb and are, in addi-
tion, sorted correctly (yatnena modifies pranayati and is itself modified
by mahata, etc.). How the nominatives in the beginning of the sentence
are connected remains open to discussion even for a human user. How-
ever, it should be noted that the parser correctly associates the direc-
tional adjective pranmukhah with the absolutive upavisya and not with
the preceeding and congruent nominative -panih. On the whole, the few

restrictions introduced by the fixed syntactic rules clearly improve the
analysis of the sentences.

3 Summary

In spite of the appealingly simple idea on which it is based, Yuret’s
parser is not able to correctly identify the syntactic structures of San-
skrit sentences. This behavior may be due to lack of training data. The
performance of the parser can be improved when additional, non-lexical
information about grammar and valences is included in the parsing pro-
cess. The best performance is achieved when lexical and grammatical
information is combined with a small number of fixed rules. These rules
describe the basic components and structures of a complete sentence,
but they are by far less detailed than the finite automata used by some
researchers. Judging from the few samples that we have discussed in Sec-
tion 2.3, such a hybrid approach can certainly be used as a starting point
for building a database of the syntactic structures of classical Sanskrit.
The strict projectivity of the dependency tree assumed in Yuret’s original
version of the algorithm remains an unsolved problem especially in the
context of versified Sanskrit. In a future version of the parser, one may
allow crossing links in the dependency structure if, for example, both
links have a very high mutual information.

*

Fig. 1. Sample phrases parsed using Yuret’s method — The numbers give the logarithm
of the conditional lexical probability of two words.

References

1. T. Brants. TnT - a statistical part-of-speech tagger. In Proceedings
of the 6th Applied NLP Conference, Seattle, 2000.

evam ‘ftad ‘nivas ‘tatra

Fig. 2. Sample phrases parsed using all optimizations except for fixed syntactic rules
— e = syntactic enforcement, C = probability estimated by smoothing

fixed

evam fad ‘nivas tatra garva ‘kama §u pijay

Fig. 3. Sample phrases parsed using all optimizations — Symbols are explained in the
caption of Figure 2.

fixed

fixed

pramanabhi‘acarya darbha pavitra‘p

ani pran- duci*ava- ‘upavi§ mahant yatna satra 'prani sma
mukha kasa

Fig. 4. “Benchmark sentence” parsed with all optimizations activated

10.

11.

12.

José Canedo. Zur Wort- und Satzstellung in der alt- und mittelindis-
chen Prosa. Vandenhoeck & Ruprecht, Géttingen, 1937.

Ido Dagan, Lillian Lee, and Fernando C. N. Pereira. Similarity-
based models of word cooccurrence probabilities. Machine Learning,
34(1-3):43-69, 1999.

B. Delbriick. Altindische Syntax. Verlag der Buchhandlung des
Waisenhauses, Halle, 1988.

Jan Gonda. Old Indian. Handbuch der Orientalistik, Zweite
Abteilung, Erster Band, Erster Abschnitt. E.J. Brill, Leiden, 1971.

Pawan Goyal, Vipul Arora, and Laxmidhar Behera. Analysis of San-
skrit text: Parsing and semantic relation. In Proceedings of the First
International Sanskrit Computational Linguistics Symposium, pages
23-36, 2007.

Oliver Hellwig. SanskritTagger, a stochastic lexical and POS tag-
ger for Sanskrit. In Proceedings of the First International Sanskrit
Computational Linguistics Symposium, pages 37-46, Rocquencourt,
2007.

Ingeborg Ickler. Untersuchungen zur Wortstellung und Syntax der
Chandogyopanisad. Goppinger Akademische Beitrége, 75. Verlag Al-
fred Kiimmerle, Géppingen, 1973.

J.S. Speyer. Vedische und Sanskrit-Syntar. Grundriss der Indo-
arischen Philologie und Altertumskunde, ITI. Band, Heft A. Verlag
von Karl J. Triibner, Strassburg, 1896.

J.F. Staal. Word Order in Sanskrit and Universal Grammar. Foun-
dations of Language, Supplementary Series, Volume 5. D. Reidel
Publishing Company, Dordrecht, 1967.

Oliver Wauschkuhn. Automatische Extraktion von Verbvalenzen aus
deutschen Textkorpora. Shaker Verlag, Aachen, 1999.

Deniz Yuret. Discovery of Linguistic Relations Using Lexical Attrac-
tion. PhD thesis, Massachusetts Institute of Technology, 1998.

